Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy M. Andacht is active.

Publication


Featured researches published by Tracy M. Andacht.


Insect Biochemistry and Molecular Biology | 2009

Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae

Krishnareddy Bayyareddy; Tracy M. Andacht; Mohd Amir Fursan Abdullah; Michael J. Adang

Novel Bacillus thuringiensis subsp. israelensis (Bti) Cry4Ba toxin-binding proteins have been identified in gut brush border membranes of the Aedes (Stegomyia) aegypti mosquito larvae by combining 2-dimensional gel electrophoresis (2DE) and ligand blotting followed by protein identification using mass spectrometry and database searching. Three alkaline phosphatase isoforms and aminopeptidase were identified. Other Cry4Ba binding proteins identified include the putative lipid raft proteins flotillin and prohibitin, V-ATPase B subunit and actin. These identified proteins might play important roles in mediating the toxicity of Cry4Ba due to their location in the gut brush border membrane. Cadherin-type protein was not identified, although previously, we identified a midgut cadherin AgCad1 as a putative Cry4Ba receptor in Anopheles gambiae mosquito larvae [Hua, G., Zhang, R., Abdullah, M.A., Adang, M.J., 2008. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 47, 5101-5110]. Other identified proteins in this study that might have lesser roles include mitochondrial proteins such as ATP synthase subunits, mitochondrial processing peptidase and porin; which are likely contaminants from mitochondria and are not brush border membrane components. Trypsin-like serine protease was also identified as a protein that binds Cry4Ba. Identification of these toxin-binding proteins will lead to a better understanding of the mode of action of this toxin in mosquito.


Biochemistry | 2008

A 106-kDa Aminopeptidase Is a Putative Receptor for Bacillus thuringiensis Cry11Ba Toxin in the Mosquito Anopheles gambiae †

Rui Zhang; Gang Hua; Tracy M. Andacht; Michael J. Adang

Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.


Phytotherapy Research | 2013

Selective Inhibition of Cell Proliferation by Lycopene in MCF-7 Breast Cancer Cells In vitro: A Proteomic Analysis

Padma P. Tadi Uppala; Tixieanna Dissmore; Benjamin H.S. Lau; Tracy M. Andacht; Sujatha Rajaram

Lycopene, a red pigmented carotenoid present in many fruits and vegetables such as tomatoes, has been associated with the reduced risk of breast cancer. This study sought to identify proteins modulated by lycopene during cell proliferation of the breast cancer cell line MCF‐7 to gain an understanding into its mechanism of action. MCF‐7 breast cancer cells and MCF‐10 normal breast cells were treated with 0, 2, 4, 6, 8, and 10 μM of lycopene for 72 h. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) tetrazolium reduction assay was used to measure cell proliferation and two‐dimensional fluorescence difference gel electrophoresis to assess the changes in protein expression, which were identified using MALDI‐ToF/ToF (matrix‐assisted laser desorption ionization tandem time‐of‐flight) and Mascot database search. MTT and cell proliferation assays showed that lycopene selectively inhibited the growth of MCF‐7 but not MCF‐10 cells. Difference gel electrophoresis analysis revealed that proteins in the MCF‐7 cells respond differently to lycopene compared with the MCF‐10 cells. Lycopene altered the expression levels of proteins such as Cytokeratin 8/18 (CK8/18), CK19 and their post translational status. We have shown that lycopene inhibits cell proliferation in MCF‐7 human breast cancer cells but not in the MCF‐10 mammary epithelial cells. Lycopene was shown to modulate cell cycle proteins such as beta tubulin, CK8/18, CK19 and heat shock proteins. Copyright


Molecular Biology and Evolution | 2011

Population Proteomics: Quantitative Variation Within and Among Populations in Cardiac Protein Expression

Bernard B. Rees; Tracy M. Andacht; Elena Skripnikova; Douglas L. Crawford

Population analysis of gene expression is typically achieved by quantifying levels of mRNA; however, gene expression is also a function of protein translation and turnover. Therefore, a complete understanding of population variation in gene expression requires quantitative knowledge of protein expression within and among natural populations. We used two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) to quantitatively compare expression of heart ventricle proteins among 18 individuals in three populations of the teleost fish Fundulus. Among populations, expressions between orthologous proteins and mRNAs were generally positively correlated. Additionally, similar to the pattern of cardiac mRNA expression for the same populations, we found considerable variation in protein expression both within and among populations: Of 408 protein features in 2D gels, 34% are significantly different (P < 0.01) among individuals within a population, 9% differ between populations, and 12% have a pattern of expression that suggests they have evolved by natural selection. Although similar to mRNA expression, the frequency of significant differences among populations is larger for proteins. Similar to mRNA expressions, expressions of most proteins are correlated to the expressions of many other proteins. However, the correlations among proteins are more extensive than the correlation for similar RNAs. These correlations suggest a greater coordinate regulation of protein than mRNA expression. The larger frequency of significant differences among populations and the greater frequency of correlated expression among proteins versus among RNAs suggest that the molecular mechanisms affecting protein expression enhance the differences among populations, and these regulatory steps could be a source of variation for adaptation.


Journal of Bacteriology | 2007

Identification of Major Sporulation Proteins of Myxococcus xanthus Using a Proteomic Approach

John L. Dahl; Farah K. Tengra; David Dutton; Jinyuan Yan; Tracy M. Andacht; Lia Coyne; Veronica Windell; Anthony G. Garza

Myxococcus xanthus is a soil-dwelling, gram-negative bacterium that during nutrient deprivation is capable of undergoing morphogenesis from a vegetative rod to a spherical, stress-resistant spore inside a domed-shaped, multicellular fruiting body. To identify proteins required for building stress-resistant M. xanthus spores, we compared the proteome of liquid-grown vegetative cells with the proteome of mature fruiting body spores. Two proteins, protein S and protein S1, were differentially expressed in spores, as has been reported previously. In addition, we identified three previously uncharacterized proteins that are differentially expressed in spores and that exhibit no homology to known proteins. The genes encoding these three novel major spore proteins (mspA, mspB, and mspC) were inactivated by insertion mutagenesis, and the development of the resulting mutant strains was characterized. All three mutants were capable of aggregating, but for two of the strains the resulting fruiting bodies remained flattened mounds of cells. The most pronounced structural defect of spores produced by all three mutants was an altered cortex layer. We found that mspA and mspB mutant spores were more sensitive specifically to heat and sodium dodecyl sulfate than wild-type spores, while mspC mutant spores were more sensitive to all stress treatments examined. Hence, the products of mspA, mspB, and mspC play significant roles in morphogenesis of M. xanthus spores and in the ability of spores to survive environmental stress.


Insect Biochemistry and Molecular Biology | 2007

Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses.

M. Krishnamoorthy; Juan Luis Jurat-Fuentes; Rebecca J. McNall; Tracy M. Andacht; Michael J. Adang


International Journal of Pharmaceutics | 2005

New frontiers in proteomics research: a perspective.

Mukta Gupta; Tracy M. Andacht; Zhen F. Fu


Functional & Integrative Genomics | 2008

Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine

Kelli L. Hiett; Alain Stintzi; Tracy M. Andacht; Robin L. Kuntz; Bruce S. Seal


Molecular Reproduction and Development | 2004

Rapid and improved method for windowing eggs accessing the stage X chicken embryo

Tracy M. Andacht; Wei Hu; Robert Ivarie


Archive | 2001

Method for windowing eggs

Tracy M. Andacht; Robert Ivarie

Collaboration


Dive into the Tracy M. Andacht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard B. Rees

University of New Orleans

View shared research outputs
Top Co-Authors

Avatar

Bruce S. Seal

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

David Dutton

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge