Tran B. Nguyen
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tran B. Nguyen.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Tran B. Nguyen; John D. Crounse; Alex P. Teng; Jason M. St. Clair; Fabien Paulot; Glenn M. Wolfe; Paul O. Wennberg
Significance Dry deposition is an important removal mechanism for oxidized atmospheric compounds. This process remains, however, poorly understood due to the scarcity of direct flux observations for all but small, inorganic molecules in the atmosphere. The chemically speciated fluxes presented here comprise a unique and novel dataset that quantifies the dry deposition velocities for a variety of trace gases in a typical forested ecosystem. The data illustrate the key role of molecular diffusion in the atmosphere−biosphere exchange of water-soluble species. Furthermore, this work enabled evaluation of the dry deposition parameterization in a global chemical transport model. The results aid in resolving key discrepancies within the global model, resulting in more-accurate predictions of trace gas lifetimes and surface concentrations. We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2⋅s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.
Journal of Physical Chemistry A | 2014
Kelvin H. Bates; John D. Crounse; Jason M. St. Clair; Nathan B. Bennett; Tran B. Nguyen; John H. Seinfeld; Brian M. Stoltz; Paul O. Wennberg
Isoprene epoxydiols (IEPOX) form in high yields from the OH-initiated oxidation of isoprene under low-NO conditions. These compounds contribute significantly to secondary organic aerosol formation. Their gas-phase chemistry has, however, remained largely unexplored. In this study, we characterize the formation of IEPOX isomers from the oxidation of isoprene by OH. We find that cis-β- and trans-β-IEPOX are the dominant isomers produced, and that they are created in an approximate ratio of 1:2 from the low-NO oxidation of isoprene. Three isomers of IEPOX, including cis-β- and trans-β, were synthesized and oxidized by OH in environmental chambers under high- and low-NO conditions. We find that IEPOX reacts with OH at 299 K with rate coefficients of (0.84 ± 0.07) × 10(-11), (1.52 ± 0.07) × 10(-11), and (0.98 ± 0.05) × 10(-11) cm(3) molecule(-1) s(-1) for the δ1, cis-β, and trans-β isomers. Finally, yields of the first-generation products of IEPOX + OH oxidation were measured, and a new mechanism of IEPOX oxidation is proposed here to account for the observed products. The substantial yield of glyoxal and methylglyoxal from IEPOX oxidation may help explain elevated levels of those compounds observed in low-NO environments with high isoprene emissions.
Environmental Science & Technology | 2015
Jordan E. Krechmer; Matthew M. Coggon; Paola Massoli; Tran B. Nguyen; John D. Crounse; Weiwei Hu; Douglas A. Day; Geoffrey S. Tyndall; Daven K. Henze; Jean C. Rivera-Rios; J. B. Nowak; Joel R. Kimmel; Roy L. Mauldin; Harald Stark; John T. Jayne; Mikko Sipilä; Heikki Junninen; Jason M. St. Clair; Xuan Zhang; Philip A. Feiner; Li Zhang; David O. Miller; William H. Brune; Frank N. Keutsch; Paul O. Wennberg; John H. Seinfeld; Douglas R. Worsnop; Jose L. Jimenez; Manjula R. Canagaratna
Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 μg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA.
Environmental Science & Technology | 2011
Tran B. Nguyen; Julia Laskin; Alexander Laskin; Sergey A. Nizkorodov
Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NO(x) conditions. Approximately 80-90% of the observed products are oligomers and up to 33% by number are nitrogen-containing organic compounds (NOC). We observe oligomers with maximum 8 monomer units in length. Tandem mass spectrometry (MS(n)) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C(2)-C(5) monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, and glycolaldehyde. Although the molar fraction of NOC in the high-NO(x) SOA is high, the majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NO(x) conditions and 0.83 under the high-NO(x) conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.
Geophysical Research Letters | 2014
Jean C. Rivera-Rios; Tran B. Nguyen; John D. Crounse; Werner Jud; J. M. St. Clair; Tomas Mikoviny; J. B. Gilman; Jennifer Kaiser; J. A. de Gouw; Armin Wisthaler; Armin Hansel; Paul O. Wennberg; John H. Seinfeld; Frank N. Keutsch
Atmospheric volatile organic compound (VOC) oxidation mechanisms under pristine (rural/remote) and urban (anthropogenically-influenced) conditions follow distinct pathways due to large differences in nitrogen oxide (NO_x) concentrations. These two pathways lead to products that have different chemical and physical properties and reactivity. Under pristine conditions, isoprene hydroxy hydroperoxides (ISOPOOHs) are the dominant first-generation isoprene oxidation products. Utilizing authentic ISOPOOH standards, we demonstrate that two of the most commonly used methods of measuring VOC oxidation products (i.e., gas chromatography and proton transfer reaction mass spectrometry) observe these hydroperoxides as their equivalent high-NO isoprene oxidation products – methyl vinyl ketone (MVK) and methacrolein (MACR). This interference has led to an observational bias affecting our understanding of global atmospheric processes. Considering these artifacts will help close the gap on discrepancies regarding the identity and fate of reactive organic carbon, revise our understanding of surface-atmosphere exchange of reactive carbon and SOA formation, and improve our understanding of atmospheric oxidative capacity.
Environmental Science & Technology | 2014
Shikang Tao; Xiaohui Lu; Nicole Levac; Adam P. Bateman; Tran B. Nguyen; David L. Bones; Sergey A. Nizkorodov; Julia Laskin; Alexander Laskin; Xin Yang
Fine aerosol particles in the urban areas of Shanghai and Los Angeles were collected on days that were characterized by their stagnant air and high organic aerosol concentrations. They were analyzed by nanospray-desorption electrospray ionization mass spectrometry with high mass resolution (m/Δm = 100,000). Solvent mixtures of acetonitrile and water and acetonitrile and toluene were used to extract and ionize polar and nonpolar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. A majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates that were detected at two locations have distinctly different molecular characteristics. Specifically, the organosulfates in the Los Angeles sample were dominated by biogenic products, while the organosulfates of a yet unknown origin found in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degrees of oxidation and unsaturation. The use of the acetonitrile and toluene solvent facilitated the observation of this type of organosulfates, which suggests that they could have been missed in previous studies that relied on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the uncommon organosulfates suggest that they may act as surfactants and plausibly affect the surface tension and hygroscopicity of atmospheric particles. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in the liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.
Atmospheric Chemistry and Physics | 2016
Jenny A. Fisher; Daniel J. Jacob; Katherine R. Travis; Patrick S. Kim; Eloise A. Marais; Christopher Miller; Karen Yu; Lei Zhu; Robert M. Yantosca; Melissa P. Sulprizio; Jingqiu Mao; Paul O. Wennberg; John D. Crounse; Alex P. Teng; Tran B. Nguyen; Jason M. St. Clair; R. C. Cohen; Paul M. Romer; Benjamin A. Nault; P. J. Wooldridge; Jose L. Jimenez; Pedro Campuzano-Jost; Douglas A. Day; Weiwei Hu; Paul B. Shepson; Fulizi Xiong; D. R. Blake; Allen H. Goldstein; Pawel K. Misztal; T. F. Hanisco
Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ∼25 × 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO2 in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20% by photolysis to recycle NOx and 15% by dry deposition. RONO2 production accounts for 20% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.
Environmental Science & Technology | 2013
C. L. Loza; Matthew M. Coggon; Tran B. Nguyen; Andreas Zuend; John H. Seinfeld
The physical state and chemical composition of an organic aerosol affect its degree of mixing and its interactions with condensing species. We present here a laboratory chamber procedure for studying the effect of the mixing of organic aerosol components on particle evaporation. The procedure is applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxidation. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 °C) to 42 °C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from the two precursors on the time scale of the experiments, consistent with a high viscosity of at least one of the phases.
Physical Chemistry Chemical Physics | 2012
Tran B. Nguyen; Alexander Laskin; Julia Laskin; Sergey A. Nizkorodov
Secondary organic aerosol (SOA) generated from the high-NO(x) photooxidation of isoprene was dissolved in water and irradiated with λ > 290 nm radiation to simulate direct photolytic processing of organics in atmospheric water droplets. High-resolution mass spectrometry was used to characterize the composition at four time intervals (0, 1, 2, and 4 h). Photolysis resulted in the decomposition of high molecular weight (MW) oligomers, reducing the average length of organics by 2 carbon units. The average molecular composition changed significantly after irradiation (C(12)H(19)O(9)N(0.08) + hν → C(10)H(16)O(8)N(0.40)). Approximately 65% by count of SOA molecules decomposed during photolysis, accompanied by the formation of new products. An average of 30% of the organic mass was modified after 4 h of direct photolysis. In contrast, only a small fraction of the mass (<2%), belonging primarily to organic nitrates, decomposed in the absence of irradiation by hydrolysis. Furthermore, the concentration of aromatic compounds increased significantly during photolysis. Approximately 10% (lower limit) of photodegraded compounds and 50% (upper limit) of the photoproducts contain nitrogen. Organic nitrates and multifunctional oligomers were identified as compounds degraded by photolysis. Low-MW 0N (compounds with 0 nitrogen atoms in their structure) and 2N compounds were the dominant photoproducts. Fragmentation experiments using tandem mass spectrometry (MS(n), n = 2-3) indicate that the 2N products are likely heterocyclic/aromatic and are tentatively identified as furoxans. Although the exact mechanism is unclear, these 2N heterocyclic compounds are produced by reactions between photochemically-formed aqueous NO(x) species and SOA organics.
Journal of Physical Chemistry A | 2015
Rebecca H. Schwantes; Alexander P. Teng; Tran B. Nguyen; Matthew M. Coggon; John D. Crounse; Jason M. St. Clair; Xuan Zhang; K. A. Schilling; John H. Seinfeld; Paul O. Wennberg
We describe the products of the reaction of the hydroperoxy radical (HO(2)) with the alkylperoxy radical formed following addition of the nitrate radical (NO(3)) and O(2) to isoprene. NO(3) adds preferentially to the C(1) position of isoprene (>6 times more favorably than addition to C(4)), followed by the addition of O(2) to produce a suite of nitrooxy alkylperoxy radicals (RO(2)). At an RO(2) lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO(2) + HO(2) pathway are identified as 0.75-0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH(2)O) + hydroxyl radical (OH) + nitrogen dioxide (NO(2)), and 0-0.03 methacrolein (MACR) + CH(2)O + OH + NO(2). We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation.
Collaboration
Dive into the Tran B. Nguyen's collaboration.
Cooperative Institute for Research in Environmental Sciences
View shared research outputs