Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Travis Beddoe is active.

Publication


Featured researches published by Travis Beddoe.


Nature | 2006

Ab5 Subtilase Cytotoxin Inactivates the Endoplasmic Reticulum Chaperone Bip

Adrienne W. Paton; Travis Beddoe; Cheleste M. Thorpe; James C. Whisstock; Matthew C. J. Wilce; Jamie Rossjohn; Ursula M. Talbot; James C. Paton

AB5 toxins are produced by pathogenic bacteria and consist of enzymatic A subunits that corrupt essential eukaryotic cell functions, and pentameric B subunits that mediate uptake into the target cell. AB5 toxins include the Shiga, cholera and pertussis toxins and a recently discovered fourth family, subtilase cytotoxin, which is produced by certain Shiga toxigenic strains of Escherichia coli. Here we show that the extreme cytotoxicity of this toxin for eukaryotic cells is due to a specific single-site cleavage of the essential endoplasmic reticulum chaperone BiP/GRP78. The A subunit is a subtilase-like serine protease; structural studies revealed an unusually deep active-site cleft, which accounts for its exquisite substrate specificity. A single amino-acid substitution in the BiP target site prevented cleavage, and co-expression of this resistant protein protected transfected cells against the toxin. BiP is a master regulator of endoplasmic reticulum function, and its cleavage by subtilase cytotoxin represents a previously unknown trigger for cell death.


Nature Immunology | 2013

Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells

Stefano Vavassori; Anil Kumar; Gan Siok Wan; Gundimeda S Ramanjaneyulu; Marco Cavallari; Sary El Daker; Travis Beddoe; Alex Theodossis; Neal K. Williams; Emma Gostick; David A. Price; Dinish U. Soudamini; Kong Kien Voon; Malini Olivo; Jamie Rossjohn; Lucia Mori; Gennaro De Libero

Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I–related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.


Nature | 2008

Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

Emma Byres; Adrienne W. Paton; James C. Paton; Jonas Löfling; David F. Smith; Matthew C. J. Wilce; Ursula M. Talbot; Damien C. Chong; Hai Yu; Shengshu Huang; Xi Chen; Nissi M. Varki; Ajit Varki; Jamie Rossjohn; Travis Beddoe

AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxins receptor is generated by metabolic incorporation of an exogenous factor derived from food.


Nature | 2011

Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B

Julian P. Vivian; Renee C Duncan; Richard M. Berry; Geraldine M. O'Connor; Hugh H. Reid; Travis Beddoe; Stephanie Gras; Philippa M. Saunders; Maya A Olshina; Jacqueline M. L. Widjaja; Christopher M. Harpur; Jie Lin; Sebastien Maloveste; David A. Price; Bernard A. P. Lafont; Daniel W. McVicar; Craig S. Clements; Andrew G. Brooks; Jamie Rossjohn

Members of the killer cell immunoglobulin-like receptor (KIR) family, a large group of polymorphic receptors expressed on natural killer (NK) cells, recognize particular peptide-laden human leukocyte antigen (pHLA) class I molecules and have a pivotal role in innate immune responses. Allelic variation and extensive polymorphism within the three-domain KIR family (KIR3D, domains D0–D1–D2) affects pHLA binding specificity and is linked to the control of viral replication and the treatment outcome of certain haematological malignancies. Here we describe the structure of a human KIR3DL1 receptor bound to HLA-B*5701 complexed with a self-peptide. KIR3DL1 clamped around the carboxy-terminal end of the HLA-B*5701 antigen-binding cleft, resulting in two discontinuous footprints on the pHLA. First, the D0 domain, a distinguishing feature of the KIR3D family, extended towards β2-microglobulin and abutted a region of the HLA molecule with limited polymorphism, thereby acting as an ‘innate HLA sensor’ domain. Second, whereas the D2–HLA-B*5701 interface exhibited a high degree of complementarity, the D1–pHLA-B*5701 contacts were suboptimal and accommodated a degree of sequence variation both within the peptide and the polymorphic region of the HLA molecule. Although the two-domain KIR (KIR2D) and KIR3DL1 docked similarly onto HLA-C and HLA-B respectively, the corresponding D1-mediated interactions differed markedly, thereby providing insight into the specificity of KIR3DL1 for discrete HLA-A and HLA-B allotypes. Collectively, in association with extensive mutagenesis studies at the KIR3DL1–pHLA-B*5701 interface, we provide a framework for understanding the intricate interplay between peptide variability, KIR3D and HLA polymorphism in determining the specificity requirements of this essential innate interaction that is conserved across primate species.


Nature Communications | 2013

Recognition of vitamin B metabolites by mucosal-associated invariant T cells.

Onisha Patel; Lars Kjer-Nielsen; Jérôme Le Nours; Sidonia B. G. Eckle; Richard W. Birkinshaw; Travis Beddoe; Alexandra J. Corbett; Ligong Liu; John J. Miles; Bronwyn Meehan; Rangsima Reantragoon; Maria L Sandoval-Romero; Lucy C. Sullivan; Andrew G. Brooks; Zhenjun Chen; David P. Fairlie; James McCluskey; Jamie Rossjohn

The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR α-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures.


Journal of Experimental Medicine | 2004

Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion

Danielle Zernich; Anthony W. Purcell; Whitney A. Macdonald; Lars Kjer-Nielsen; Lauren K. Ely; Nihay Laham; Tanya Crockford; Nicole A. Mifsud; Mandvi Bharadwaj; Linus Chang; Brian D. Tait; Rhonda Holdsworth; Andrew G. Brooks; Stephen P. Bottomley; Travis Beddoe; Chen Au Peh; Jamie Rossjohn; James McCluskey

HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion.


Journal of Biological Chemistry | 2003

The 2.0-Å Crystal Structure of eqFP611, a Far Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor

Jan Petersen; Pascal G. Wilmann; Travis Beddoe; Aaron J. Oakley; Rodney J. Devenish; Mark Prescott; Jamie Rossjohn

We have crystallized and subsequently determined to 2.0-Å resolution the crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. The structure of the protomer, which adopts a β-can topology, is similar to that of the related monomeric green fluorescent protein (GFP). The quaternary structure of eqFP611, a tetramer exhibiting 222 symmetry, is similar to that observed for the more closely related red fluorescent protein DsRed and the chromoprotein Rtms5. The unique chromophore sequence (Met63-Tyr64-Gly65) of eqFP611, adopts a coplanar and trans conformation within the interior of the β-can fold. Accordingly, the eqFP611 chromophore adopts a significantly different conformation in comparison to the chromophore conformation observed in GFP, DsRed, and Rtms5. The coplanar chromophore conformation and its immediate environment provide a structural basis for the far red, highly fluorescent nature of eqFP611. The eqFP611 structure extends our knowledge on the range of conformations a chromophore can adopt within closely related members of the green fluorescent protein family.


Nature Immunology | 2013

Structural basis of a unique interferon-[beta] signaling axis mediated via the receptor IFNAR1

Nicole Anne De Weerd; Julian P. Vivian; Thao Kim Thi Nguyen; Niamh E. Mangan; Jodee Gould; Susie-Jane Braniff; Leyla Zaker-Tabrizi; Ka Yee Fung; Samuel C. Forster; Travis Beddoe; Hugh H. Reid; Jamie Rossjohn; Paul J. Hertzog

Type I interferons are important in regulating immune responses to pathogens and tumors. All interferons are considered to signal via the heterodimeric IFNAR1-IFNAR2 complex, yet some subtypes such as interferon-β (IFN-β) can exhibit distinct functional properties, although the molecular basis of this is unclear. Here we demonstrate IFN-β can uniquely and specifically ligate to IFNAR1 in an IFNAR2-independent manner, and we provide the structural basis of the IFNAR1–IFN-β interaction. The IFNAR1–IFN-β complex transduced signals that modulated expression of a distinct set of genes independently of Jak-STAT pathways. Lipopolysaccharide-induced sepsis was ameliorated in Ifnar1−/− mice but not Ifnar2−/− mice, suggesting that IFNAR1–IFN-β signaling is pathologically relevant. Thus, we provide a molecular basis for understanding specific functions of IFN-β.


Nature Immunology | 2013

CD1d-lipid antigen recognition by the γδ TCR

Adam P. Uldrich; Jérôme Le Nours; Daniel G. Pellicci; Nicholas A. Gherardin; Kristy G McPherson; R.T. Lim; Onisha Patel; Travis Beddoe; Stephanie Gras; Jamie Rossjohn; Dale I. Godfrey

The T cell repertoire comprises αβ and γδ T cell lineages. Although it is established how αβ T cell antigen receptors (TCRs) interact with antigen presented by antigen-presenting molecules, this is unknown for γδ TCRs. We describe a population of human Vδ1+ γδ T cells that exhibit autoreactivity to CD1d and provide a molecular basis for how a γδ TCR binds CD1d–α-galactosylceramide (α-GalCer). The γδ TCR docked orthogonally, over the A′ pocket of CD1d, in which the Vδ1-chain, and in particular the germ line–encoded CDR1δ loop, dominated interactions with CD1d. The TCR γ-chain sat peripherally to the interface, with the CDR3γ loop representing the principal determinant for α-GalCer specificity. Accordingly, we provide insight into how a γδ TCR binds specifically to a lipid-loaded antigen-presenting molecule.


Journal of Experimental Medicine | 2008

CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence

Emma J. Petrie; Craig S. Clements; Jie Lin; Lucy C. Sullivan; Darryl Johnson; Trevor Huyton; Annie Heroux; Hilary Linda Hoare; Travis Beddoe; Hugh H. Reid; Matthew C. J. Wilce; Andrew G. Brooks; Jamie Rossjohn

The recognition of human leukocyte antigen (HLA)-E by the heterodimeric CD94-NKG2 natural killer (NK) receptor family is a central innate mechanism by which NK cells monitor the expression of other HLA molecules, yet the structural basis of this highly specific interaction is unclear. Here, we describe the crystal structure of CD94-NKG2A in complex with HLA-E bound to a peptide derived from the leader sequence of HLA-G. The CD94 subunit dominated the interaction with HLA-E, whereas the NKG2A subunit was more peripheral to the interface. Moreover, the invariant CD94 subunit dominated the peptide-mediated contacts, albeit with poor surface and chemical complementarity. This unusual binding mode was consistent with mutagenesis data at the CD94-NKG2A–HLA-E interface. There were few conformational changes in either CD94-NKG2A or HLA-E upon ligation, and such a “lock and key” interaction is typical of innate receptor–ligand interactions. Nevertheless, the structure also provided insight into how this interaction can be modulated by subtle changes in the peptide ligand or by the pairing of CD94 with other members of the NKG2 family. Differences in the docking strategies used by the NKG2D and CD94-NKG2A receptors provided a basis for understanding the promiscuous nature of ligand recognition by NKG2D compared with the fidelity of the CD94-NKG2 receptors.

Collaboration


Dive into the Travis Beddoe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge