Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trevor A. Branch is active.

Publication


Featured researches published by Trevor A. Branch.


Science | 2009

Rebuilding Global Fisheries

Boris Worm; Ray Hilborn; Julia K. Baum; Trevor A. Branch; Jeremy S. Collie; Christopher Costello; Michael J. Fogarty; Elizabeth A. Fulton; Jeffrey A. Hutchings; Simon Jennings; Olaf P. Jensen; Heike K. Lotze; Pamela M. Mace; Tim R. McClanahan; Cóilín Minto; Stephen R. Palumbi; Ana M. Parma; Daniel Ricard; Andrew A. Rosenberg; Reg Watson; Dirk Zeller

Fighting for Fisheries In the debate concerning the future of the worlds fisheries, some have forecasted complete collapse but others have challenged this view. The protagonists in this debate have now joined forces to present a thorough quantitative review of current trends in world fisheries. Worm et al. (p. 578) evaluate the evidence for a global rebuilding of marine capture fisheries and their supporting ecosystems. Contrasting regions that have been managed for rebuilding with those that have not, reveals trajectories of decline and recovery from individual stocks to species, communities, and large marine ecosystems. The management solutions that have been most successful for rebuilding fisheries and ecosystems, include both large- and small-scale fisheries around the world. Catch restrictions, gear modification, and closed areas are helping to rebuild overexploited marine ecosystems. After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.


Nature | 2010

The trophic fingerprint of marine fisheries

Trevor A. Branch; Reg Watson; Elizabeth A. Fulton; Simon Jennings; Carey R. McGilliard; Grace T. Pablico; Daniel Ricard; Sean R. Tracey

Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse (“fishing down marine food webs”) and when low-trophic-level fisheries expand (“fishing through marine food webs”). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.


Conservation Biology | 2011

Contrasting Global Trends in Marine Fishery Status Obtained from Catches and from Stock Assessments

Trevor A. Branch; Olaf P. Jensen; Daniel Ricard; Yimin Ye; Ray Hilborn

There are differences in perception of the status of fisheries around the world that may partly stem from how data on trends in catches over time have been used. On the basis of catch trends, it has been suggested that about 70% of all stocks are overexploited due to unsustainable harvesting and 30% of all stocks have collapsed to <10% of unfished levels. Catch trends also suggest that over time an increasing number of stocks will be overexploited and collapsed. We evaluated how use of catch data affects assessment of fisheries stock status. We analyzed simulated random catch data with no trend. We examined well-studied stocks classified as collapsed on the basis of catch data to determine whether these stocks actually were collapsed. We also used stock assessments to compare stock status derived from catch data with status derived from biomass data. Status of stocks derived from catch trends was almost identical to what one would expect if catches were randomly generated with no trend. Most classifications of collapse assigned on the basis of catch data were due to taxonomic reclassification, regulatory changes in fisheries, and market changes. In our comparison of biomass data with catch trends, catch trends overestimated the percentage of overexploited and collapsed stocks. Although our biomass data were primarily from industrial fisheries in developed countries, the status of these stocks estimated from catch data was similar to the status of stocks in the rest of the world estimated from catch data. We conclude that at present 28-33% of all stocks are overexploited and 7-13% of all stocks are collapsed. Additionally, the proportion of fished stocks that are overexploited or collapsed has been fairly stable in recent years.


Nature | 2013

Fisheries: Does catch reflect abundance?

Daniel Pauly; Ray Hilborn; Trevor A. Branch

Researchers are divided over the wisdom of using estimates of the amount of fish hauled in each year to assess the health of fisheries.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Global fishery development patterns are driven by profit but not trophic level

Suresh A. Sethi; Trevor A. Branch; Reg Watson

Successful ocean management needs to consider not only fishing impacts but drivers of harvest. Consolidating post-1950 global catch and economic data, we assess which attributes of fisheries are good indicators for fishery development. Surprisingly, year of development and economic value are not correlated with fishery trophic levels. Instead, patterns emerge of profit-driven fishing for attributes related to costs and revenues. Post-1950 fisheries initially developed on shallow ranging species with large catch, high price, and big body size, and then expanded to less desirable species. Revenues expected from developed fisheries declined 95% from 1951 to 1999, and few high catch or valuable fishing opportunities remain. These results highlight the importance of economic attributes of species as leading indicators for harvest-related impacts in ocean ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Global fishery prospects under contrasting management regimes

Christopher Costello; Daniel Ovando; Tyler Clavelle; C. Kent Strauss; Ray Hilborn; Michael C. Melnychuk; Trevor A. Branch; Steven D. Gaines; Cody Szuwalski; Reniel B. Cabral; Douglas N. Rader; Amanda Leland

Significance What would extensive fishery reform look like? In addition, what would be the benefits and trade-offs of implementing alternative approaches to fisheries management on a worldwide scale? To find out, we assembled the largest-of-its-kind database and coupled it to state-of-the-art bioeconomic models for more than 4,500 fisheries around the world. We find that, in nearly every country of the world, fishery recovery would simultaneously drive increases in food provision, fishery profits, and fish biomass in the sea. Our results suggest that a suite of approaches providing individual or communal access rights to fishery resources can align incentives across profit, food, and conservation so that few trade-offs will have to be made across these objectives in selecting effective policy interventions. Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous—the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world’s fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch,


PLOS ONE | 2012

Eco-Label Conveys Reliable Information on Fish Stock Health to Seafood Consumers

Nicolás L. Gutiérrez; Sarah R. Valencia; Trevor A. Branch; David J. Agnew; Julia K. Baum; Patricia L. Bianchi; Jorge Cornejo-Donoso; Christopher Costello; Omar Defeo; Timothy E. Essington; Ray Hilborn; Daniel D. Hoggarth; Ashley E. Larsen; Chris Ninnes; Keith Sainsbury; Rebecca L. Selden; Seeta A. Sistla; Anthony D.M. Smith; Amanda Stern-Pirlot; Sarah J. Teck; James T. Thorson; Nicholas E. Williams

53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits.


Trends in Ecology and Evolution | 2013

Impacts of ocean acidification on marine seafood

Trevor A. Branch; Bonnie M. DeJoseph; Liza J. Ray; Cherie A. Wagner

Concerns over fishing impacts on marine populations and ecosystems have intensified the need to improve ocean management. One increasingly popular market-based instrument for ecological stewardship is the use of certification and eco-labeling programs to highlight sustainable fisheries with low environmental impacts. The Marine Stewardship Council (MSC) is the most prominent of these programs. Despite widespread discussions about the rigor of the MSC standards, no comprehensive analysis of the performance of MSC-certified fish stocks has yet been conducted. We compared status and abundance trends of 45 certified stocks with those of 179 uncertified stocks, finding that 74% of certified fisheries were above biomass levels that would produce maximum sustainable yield, compared with only 44% of uncertified fisheries. On average, the biomass of certified stocks increased by 46% over the past 10 years, whereas uncertified fisheries increased by just 9%. As part of the MSC process, fisheries initially go through a confidential pre-assessment process. When certified fisheries are compared with those that decline to pursue full certification after pre-assessment, certified stocks had much lower mean exploitation rates (67% of the rate producing maximum sustainable yield vs. 92% for those declining to pursue certification), allowing for more sustainable harvesting and in many cases biomass rebuilding. From a consumer’s point of view this means that MSC-certified seafood is 3–5 times less likely to be subject to harmful fishing than uncertified seafood. Thus, MSC-certification accurately identifies healthy fish stocks and conveys reliable information on stock status to seafood consumers.


Conservation Biology | 2012

Defining Trade-Offs among Conservation, Profitability, and Food Security in the California Current Bottom-Trawl Fishery

Ray Hilborn; Ian J. Stewart; Trevor A. Branch; Olaf P. Jensen

Ocean acidification is a series of chemical reactions due to increased CO(2) emissions. The resulting lower pH impairs the senses of reef fishes and reduces their survival, and might similarly impact commercially targeted fishes that produce most of the seafood eaten by humans. Shelled molluscs will also be negatively affected, whereas cephalopods and crustaceans will remain largely unscathed. Habitat changes will reduce seafood production from coral reefs, but increase production from seagrass and seaweed. Overall effects of ocean acidification on primary productivity and, hence, on food webs will result in hard-to-predict winners and losers. Although adaptation, parental effects, and evolution can mitigate some effects of ocean acidification, future seafood platters will look rather different unless CO(2) emissions are curbed.


PLOS ONE | 2011

Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

Robert H. Williams; Martin Krkošek; Erin Ashe; Trevor A. Branch; Stephen Clark; Philip S. Hammond; Eric Hoyt; Dawn P. Noren; David A. S. Rosen; Arliss Winship

Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit.

Collaboration


Dive into the Trevor A. Branch's collaboration.

Top Co-Authors

Avatar

Ray Hilborn

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Candice K. Emmons

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marla M. Holt

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Ana M. Parma

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Bradley Hanson

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge