Trevor C. VandenBoer
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trevor C. VandenBoer.
Environmental Science & Technology | 2012
Cora J. Young; Rebecca A. Washenfelder; James M. Roberts; Levi H Mielke; Hans D. Osthoff; Catalina Tsai; Olga Pikelnaya; J. Stutz; P. R. Veres; Anthony Cochran; Trevor C. VandenBoer; James Flynn; N. Grossberg; Christine Haman; Barry Lefer; Harald Stark; Martin Graus; Joost A. de Gouw; J. B. Gilman; William C. Kuster; Steven S. Brown
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
Journal of Geophysical Research | 2012
Lars Ahlm; Shang Liu; Douglas A. Day; Lynn M. Russell; R. J. Weber; D. R. Gentner; Allen H. Goldstein; Josh P. DiGangi; S. B. Henry; Frank N. Keutsch; Trevor C. VandenBoer; Milos Z. Markovic; Jennifer G. Murphy; Xinrong Ren; Scott Scheller
carbon (EC) and the AMS tracer C4H9 for hydrocarbon-like organic aerosol (HOA) peaked in the early morning during rush hour, indicative of primary emissions. The fact that the particle number concentration peaked in the afternoon, when EC was at minimum, indicates that the midday increase in number concentration was likely due to new particle formation. The potential importance of solar radiation, the condensation sink of vapor on existing particles, concentrations of OH, O3 ,S O2 ,N H3, and VOCs for both condensational growth and new particle formation is evaluated based on the covariation of these parameters with ultrafine mass. The results suggest that the ultrafine particles are from secondary sources that are co-emitted or co-produced with glyoxal and formaldehyde.
Journal of Environmental Monitoring | 2012
Milos Z. Markovic; Trevor C. VandenBoer; Jennifer G. Murphy
In this work we present the results of extensive characterization and optimization of the Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system, an instrument developed by URG Corp. and Dionex Inc. for simultaneous hourly measurements of the water-soluble chemical composition of atmospheric fine particulate matter (PM(2.5)) and associated precursor gases. The sampling assembly of the AIM-IC consists of an inertial particle size-selection assembly, a parallel-plate wet denuder (PPWD) for the collection of soluble gases, and a particle supersaturation chamber (PSSC) for collection of particles, in series. The analytical assembly of the AIM-IC consists of anion and cation IC units. The system detection limits were determined to be 41 ppt, 5 ppt, and 65 ppt for gas phase NH(3(g)), SO(2(g)), and HNO(3(g)) and 29 ng m(-3), 3 ng m(-3), and 45 ng m(-3) for particle phase NH(4)(+), SO(4)(2-), and NO(3)(-) respectively. From external trace gas calibrations with permeation sources, we determined that the AIM-IC is biased low for NH(3(g)) (11%), SO(2(g)) (19%), and HNO(3(g)) (12%). The collection efficiency of SO(2(g)) was found to strongly depend on the composition of the denuder solution and was found to be the most quantitative with 5 mM H(2)O(2) solution for mixing ratios as high as 107 ppb. Using a cellulose membrane in the PPWD, the system responded to changes in SO(2(g)) and HNO(3(g)) within an hour, however for NH(3(g)), the timescale can be closer to 20 h. With a nylon membrane, the instrument response time for NH(3(g)) was significantly improved, becoming comparable to the responses for SO(2(g)) and HNO(3(g)). Performance of the AIM-IC for collection and analysis of PM(2.5) was evaluated by generating known number concentrations of ammonium sulfate and ammonium nitrate particles (with an aerodynamic diameter of 300 nm) under laboratory conditions and by comparing AIM-IC measurements to measurements from a collocated Aerosol Mass Spectrometer (AMS) during a field-sampling campaign. On average, the AIM-IC and AMS measurements agreed well and captured rapid ambient concentration changes at the same time. In this work we also present a novel inlet configuration and plumbing for the AIM-IC which minimizes sampling inlet losses, reduces peak smearing due to sample carryover, and allows for tower-height sampling from the base of a research tower.
Journal of Geophysical Research | 2014
James T. Kelly; Kirk R. Baker; J. B. Nowak; Jennifer G. Murphy; Milos Z. Markovic; Trevor C. VandenBoer; R. A. Ellis; J. Andrew Neuman; Rodney J. Weber; James M. Roberts; P. R. Veres; Joost A. de Gouw; Melinda R. Beaver; Sally Newman; Chris Misenis
National ambient air quality standards (NAAQS) have been set for PM_2.5 due to its association with adverse health effects. PM_2.5 design values in the South Coast Air Basin (SoCAB) and San Joaquin Valley of California exceed NAAQS levels, and NH^(+)_(4) and NO^(-)_(3) make up the largest fraction of total PM2.5 mass on polluted days. Here we evaluate fine-scale simulations of PM_(2.5) NH^(+)_(4) and NO^(-)_(3) with the Community Multiscale Air Quality model using measurements from routine networks and the California Research at the Nexus of Air Quality and Climate Change 2010 campaign. The model correctly simulates broad spatial patterns of NH^(+)_(4) and NO^(-)_(3) including the elevated concentrations in eastern SoCAB. However, areas for model improvement have been identified. NH_3 emissions from livestock and dairy facilities appear to be too low, while those related to waste disposal in western SoCAB may be too high. Analyses using measurements from flights over SoCAB suggest that problems with NH3 predictions can influence NO^(-)_(3) predictions there. Offline ISORROPIA II calculations suggest that overpredictions of NH_x in Pasadena cause excessive partitioning of total nitrate to the particle phase overnight, while underpredictions of Na^+ cause too much partitioning to the gas phase during the day. Also, the model seems to underestimate mixing during the evening boundary layer transition leading to excessive nitrate formation on some nights. Overall, the analyses demonstrate fine-scale variations in model performance within and across the air basins. Improvements in inventories and spatial allocations of NH_3 emissions and in parameterizations of sea spray emissions, evening mixing processes, and heterogeneous ClNO_2 chemistry could improve model performance.
Journal of Geophysical Research | 2014
Trevor C. VandenBoer; Milos Z. Markovic; J. E. Sanders; Xinrong Ren; S. E. Pusede; E. C. Browne; R. C. Cohen; L. Zhang; J. Thomas; William H. Brune; Jennifer G. Murphy
Measurements of HONO(g) and particulate nitrite (NO2−(p)) were made with a modified Ambient Ion Monitor–Ion Chromatography (AIM-IC) instrument during California at the Nexus of Air Quality and Climate 2010 in Bakersfield, CA (CalNex-San Joaquin Valley (SJV)). Observations of gas and particulate matter (PM2.5) water-soluble composition showed accumulation of both species at night, followed by loss the next day. Intercomparison with a Stripping Coil-UV/Vis Absorption Photometer (SC-AP) demonstrated excellent agreement with the AIM-IC HONO(g) measurement (slope = 0.957, R2 = 0.86), and the particulate nitrite observations were validated to be free of known interferences for wet chemical instrumentation. The accumulation of nitrite into particulate matter was found to be enhanced when gaseous mixing ratios of HONO(g) were highest. Reactive uptake of HONO(g) on to lofted dust and the ground surface, forming a reservoir, is a potential mechanism to explain these observations. The AIM-IC HONO(g) measurements were parameterized in a chemical model to calculate the ground surface daytime HONO(g) source strength at 4.5 m above the surface, found to be on the order of 1.27 ppb h−1, to determine the relative importance of a surface reservoir. If all deposited nighttime HONO(g) is reemitted the following day, up to 30% of the daytime HONO(g) source at CalNex-SJV may be accounted for. The observations of HONO(g) and NO2−(p) in Bakersfield, during CalNex, suggest a surface sink and source of HONO(g). Extension of currently accepted unknown daytime HONO(g) source reactions to include a potential surface HONO(g) reservoir should therefore be sound, but quantitation of the relative contributions of each surface source toward daytime HONO(g) production remains to be resolved.
Environmental Science & Technology | 2013
Yunliang Zhao; Nathan M. Kreisberg; David R. Worton; Gabriel Isaacman; R. J. Weber; Shang Liu; Douglas A. Day; Lynn M. Russell; Milos Z. Markovic; Trevor C. VandenBoer; Jennifer G. Murphy; Susanne V. Hering; Allen H. Goldstein
In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA.
Journal of Geophysical Research | 2014
James M. Roberts; P. R. Veres; Trevor C. VandenBoer; Carsten Warneke; Martin Graus; Eric J. Williams; Barry Lefer; C. A. Brock; R. Bahreini; Fatma Ozturk; Ann M. Middlebrook; Nicholas L. Wagner; William P. Dubé; Joost A. de Gouw
Isocyanic acid (HNCO) has only recently been measured in the ambient atmosphere, and many aspects of its atmospheric chemistry are still uncertain. HNCO was measured during three diverse field campaigns: California Nexus—Research at the Nexus of Air Quality and Climate Change (CalNex 2010) at the Pasadena ground site, Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT 2011) at the Boulder Atmospheric Observatory (BAO) in Weld County, CO, and Biofuel Crops emission of Ozone precursors intensive (BioCORN 2011), in a cornfield NW of Fort Collins, CO. Mixing ratios varied from below detection limit (~0.003 ppbv) to over 1.2 ppbv during a period when agricultural burning impacted the BAO Tower site. Urban areas, such as the CalNex 2010 Pasadena site, appear to have both primary (combustion) and secondary (photochemical) sources of HNCO, 50 ± 9%, and 33 ± 12%, respectively, while primary sources were responsible for the large mixing ratios of HNCO observed during the wintertime NACHTT study in suburban Colorado. Isocyanic acid during the BioCORN study in rural NE Colorado was closely correlated to ozone and therefore likely photochemically produced as a secondary product from amines or formamide. The removal of HNCO from the lower atmosphere is thought to be due to deposition, as common gas phase loss processes of photolysis and reactions with hydroxyl radicals, are slow. These ambient measurements are consistent with some HNCO deposition, which was evident at night at these surface sites.
Journal of Geophysical Research | 2012
P. J. Young; Louisa Kent Emmons; James M. Roberts; Jean-Francois Lamarque; Christine Wiedinmyer; P. R. Veres; Trevor C. VandenBoer
This study uses a global chemical transport model to estimate the distribution of isocyanic acid (HNCO). HNCO is toxic, and concentrations exceeding 1 ppbv have been suggested to have negative health effects. Based on fire studies, HNCO emissions were scaled to those of hydrogen cyanide (30%), resulting in yearly total emissions of 1.5 Tg for 2008, from both anthropogenic and biomass burning sources. Loss processes included heterogeneous uptake (pH dependent), dry deposition (like formic acid), and reaction with the OH radical (k = 1 × 10−15 molecule−1 cm3 s−1). Annual mean surface HNCO concentrations were highest over parts of China (maximum of 470 pptv), but episodic fire emissions gave much higher levels, exceeding 4 ppbv in tropical Africa and the Amazon, and exceeding 10 ppbv in Southeast Asia and Siberia. This suggests that large biomass burning events could result in deleterious health effects for populations in these regions. For the tropospheric budget, using the model-calculated pH the HNCO lifetime was 37 days, with the split between dry deposition and heterogeneous loss being 95%:5%. Fixing the heterogeneous loss rate at pH = 7 meant that this process dominated, accounting for ∼70% of the total loss, giving a lifetime of 6 days, and resulting in upper tropospheric concentrations that were essentially zero. However, changing the pH does not notably impact the high concentrations found in biomass burning regions. More observational data is needed to evaluate the model, as well as a better representation of the likely underestimated biofuel emissions, which could mean more populations exposed to elevated HNCO concentrations.
Journal of Chromatography A | 2012
Trevor C. VandenBoer; Milos Z. Markovic; Alexandre Petroff; M.F. Czar; Nadine Borduas; Jennifer G. Murphy
Two methods based on ion chromatography (IC) were developed for the detection of methyl and ethyl alkyl amines (methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA)) and NH(3)/NH(4)(+) in online atmospheric gas-particle and size-resolved particulate samples. The two IC methods were developed to analyze samples collected with an ambient ion monitor (AIM), an online gas-particle collection system, or with a Micro Orifice Uniform Deposit Impactor (MOUDI) for size-resolved particle samples. These methods enable selective and (semi-) quantitative detection of alkyl amines at ambient atmospheric concentrations (pptv and pgm(-3)) in samples where significant interferences can be expected from Na(+) and NH(4)(+), for example marine and rural air masses. Sample pre-concentration using a trace cation column enabled instrumental detection limits on the order of pmol (sub-ng) levels per sample, an improvement of up to 10(2) over current IC methods. Separation was achieved using a methanesulfonic acid gradient elution on Dionex CS12A and CS17 columns. The relative standard deviations in retention times during 3 weeks continuous (hourly) sampling campaigns ranged from 0.1 to 0.5% and 0.2 to 5% for the CS12A and CS17 across a wide dynamic range of atmospheric concentrations. Resolution of inorganic and organic cations is limited to 25min for online samples. Mass-dependent coelution of NH(4)(+)/MA/EA occurred on the CS12A column and DEA/TMA coeluted on both columns. Calibrations of ammonium show a non-linear response across the entire calibration range while all other analytes exhibit high linearity (R(2)=0.984-0.999), except for EA and TEA on the CS12A (R(2)=0.960 and 0.941, respectively). Both methods have high analytical accuracy for the nitrogenous bases ranging from 9.5 to 20% for NH(3) and <5-15% for the amines. Hourly observations of amines at Egbert, ON in October 2010 showed gaseous DMA and TMA+DEA at 1-10pptv in air, while particulate DMA and TMA+DEA were present at 0.5-4ng m(-3). A size-resolved particulate sample collected over 23h was found to contain DMA, TMA+DEA and MEA at 1.78, 8.15 and 0.03ngm(-3) mass loadings, with the amine mass enhanced in particle sizes between 100 and 1000nm. These results highlight a need for very sensitive and selective detection of methyl and ethyl amines in addition to NH(3) in continuous online monitoring strategies.
Environmental Science & Technology | 2015
S. E. Pusede; Trevor C. VandenBoer; Jennifer G. Murphy; Milos Z. Markovic; Cora J. Young; P. R. Veres; James M. Roberts; Rebecca A. Washenfelder; Steven S. Brown; Xinrong Ren; Catalina Tsai; J. Stutz; William H. Brune; E. C. Browne; P. J. Wooldridge; Ashley R. Graham; R. J. Weber; Allen H. Goldstein; S. Dusanter; Stephen M. Griffith; Philip S. Stevens; Barry Lefer; R. C. Cohen
Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.
Collaboration
Dive into the Trevor C. VandenBoer's collaboration.
Cooperative Institute for Research in Environmental Sciences
View shared research outputsCooperative Institute for Research in Environmental Sciences
View shared research outputs