Trevor Wilcox
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trevor Wilcox.
Nuclear Technology | 2012
Tim Goorley; Michael R. James; Thomas E. Booth; Forrest B. Brown; Jeffrey S. Bull; L.J. Cox; Joe W. Durkee; Jay S. Elson; Michael L Fensin; R.A. Forster; John S. Hendricks; H.G. Hughes; Russell C. Johns; B. Kiedrowski; Roger L. Martz; S. G. Mashnik; Gregg W. McKinney; Denise B. Pelowitz; R. E. Prael; J. Sweezy; Laurie S. Waters; Trevor Wilcox; T. Zukaitis
MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of those two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory’s (LANL) X Computational Physics Division, Monte Carlo Codes Group (XCP-3), and Decision Applications Division, Radiation Transport and Applications Team (D-5), respectively, have combined their code development efforts to produce the next evolution of MCNP. While maintenance and bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. In fact, the initial release of MCNP6 contains 16 new features not previously found in either code. These new features include the abilities to import unstructured mesh geometries from the finite element code Abaqus, to transport photons down to 1.0 eV, to transport electrons down to 10.0 eV, to model complete atomic relaxation emissions, and to generate or read mesh geometries for use with the LANL discrete ordinates code Partisn. The first release of MCNP6, MCNP6 Beta 2, is now available through the Radiation Safety Information Computational Center, and the first production release is expected in calendar year 2012. High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, the regression test suite, its code development process, and the underlying high-quality nuclear and atomic databases.
Archive | 2015
Marc Louis Klasky; Trevor Wilcox; C.G. Bathke; Michael R. James
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Archive | 2013
John T. Goorley; Michael R. James; Thomas E. Booth; Forrest B. Brown; Jeffrey S. Bull; L.J. Cox; Joe W. Durkee; Jay S. Elson; Michael L Fensin; R.A. Forster; John S. Hendricks; H. Grady Hughes; Russell C. Johns; Brian C. Kiedrowski; Roger L. Martz; S. G. Mashnik; Gregg W. McKinney; Denise B. Pelowitz; R. E. Prael; Jeremy Ed Sweezy; Laurie S. Waters; Trevor Wilcox; Anthony J. Zukaitis
Archive | 2011
Denise B. Pelowitz; Joe W. Durkee; Jay S. Elson; Michael L Fensin; John S Hendricks; Michael R. James; Russell C. Johns; Fregg W Mc Kinney; S. G. Mashnik; Laurie S. Waters; Trevor Wilcox; Jerome M Verbeke
Archive | 2012
John T. Goorley; Michael R. James; Thomas E. Booth; Forrest B. Brown; Jeffrey S. Bull; L.J. Cox; Joe W. Durkee; Jay S. Elson; Michael L Fensin; R.A. Forster; John S. Hendricks; H. Grady Hughes; Russell C. Johns; Brian C. Kiedrowski; Roger L. Martz; S. G. Mashnik; Gregg W. McKinney; Denise B. Pelowitz; R. E. Prael; Jeremy Ed Sweezy; Laurie S. Waters; Trevor Wilcox; Anthony J. Zukaitis
Archive | 2014
Gregg W. McKinney; Forrest B. Brown; Henry Grady Hughes; Michael R. James; Roger L. Martz; Garrett Earl McMath; Trevor Wilcox
Progress in Nuclear Energy | 2013
Trevor Wilcox; T. Kawano; Gregg W. McKinney; John S. Hendricks
Archive | 2015
Garrett Earl McMath; Gregg W. McKinney; Trevor Wilcox
international conference on supercomputing | 2014
Tim Goorley; Michael R. James; Thomas E. Booth; Forrest B. Brown; Jeffrey S. Bull; L.J. Cox; Joe W. Durkee; Jay S. Elson; Michael L Fensin; R.A. Forster; John S. Hendricks; H.G. Hughes; Russell C. Johns; Brian C. Kiedrowski; Roger L. Martz; S. G. Mashnik; Gregg W. McKinney; Denise B. Pelowitz; R. E. Prael; Jeremy Ed Sweezy; Laurie S. Waters; Trevor Wilcox; T. Zukaitis
Archive | 2015
Garrett Earl McMath; Trevor Wilcox; Gregg W. McKinney