Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tricia L. Merkley is active.

Publication


Featured researches published by Tricia L. Merkley.


Developmental Neuroscience | 2010

Longitudinal Changes in the Corpus Callosum following Pediatric Traumatic Brain Injury

Trevor C. Wu; Elisabeth A. Wilde; Erin D. Bigler; Xiaoqi Li; Tricia L. Merkley; Ragini Yallampalli; Stephen R. McCauley; Kathleen P. Schnelle; Ana C. Vasquez; Zili Chu; Gerri Hanten; Jill V. Hunter; Harvey S. Levin

Background: Atrophy of the corpus callosum (CC) is a documented consequence of moderate-to-severe traumatic brain injury (TBI), which has been expressed as volume loss using quantitative magnetic resonance imaging (MRI). Other advanced imaging modalities such as diffusion tensor imaging (DTI) have also detected white matter microstructural alteration following TBI in the CC. The manner and degree to which macrostructural changes such as volume and microstructural changes develop over time following pediatric TBI, and their relation to a measure of processing speed is the focus of this longitudinal investigation. As such, DTI and volumetric changes in the CC in participants with TBI and a comparison group at approximately 3 and 18 months after injury as well as their relation to processing speed were determined. Methods: Forty-eight children and adolescents aged 7–17 years who sustained either complicated mild or moderate-to-severe TBI (n = 23) or orthopedic injury (OI; n = 25) were studied. The participants underwent brain MRI and were administered the Eriksen flanker task at both time points. Results: At 3 months after injury, there were significant group differences in DTI metrics in the total CC and its subregions (genu/anterior, body/central and splenium/posterior), with the TBI group demonstrating significantly lower fractional anisotropy (FA) and a higher apparent diffusion coefficient (ADC) in comparison to the OI group. These group differences were also present at 18 months after injury in all CC subregions, with lower FA and a higher ADC in the TBI group. In terms of longitudinal changes in DTI, despite the group difference in mean FA, both groups generally demonstrated a modest increase in FA over time though this increase was only significant in the splenium/posterior subregion. Interestingly, the TBI group also generally demonstrated ADC increases from 3 to 18 months though the OI group demonstrated ADC decreases over time. Volumetrically, the group differences at 3 months were marginal for the midanterior and body/central subregions and total CC. However, by 18 months, the TBI group demonstrated a significantly decreased volume in all subregions except the splenium/posterior area relative to the OI group. Unlike the OI group, which showed a significant volume increase in subregions of the CC over time, the TBI group demonstrated a significant and consistent volume decrease. Performance on a measure of processing speed did not differentiate the groups at either visit, and only the OI group showed significantly improved performance over time. Processing speed was related to FA in the splenium/posterior and total CC only in the TBI group on both occasions, with a stronger relation at 18 months. Conclusion: In response to TBI, macrostructural volume loss in the CC occurred over time; yet, at the microstructural level, DTI demonstrated both indicators of continued maturation and development even in the damaged CC, as well as evidence of potential degenerative change. Unlike volumetrics, which likely reflects the degree of overall neuronal loss and axonal damage, DTI may reflect some aspects of postinjury maturation and adaptation in white matter following TBI. Multimodality imaging studies may be important to further understand the long-term consequences of pediatric TBI.


Journal of Neurotrauma | 2008

SHORT COMMUNICATION: Diffuse Changes in Cortical Thickness in Pediatric Moderate-to-Severe Traumatic Brain Injury

Tricia L. Merkley; Erin D. Bigler; Elisabeth A. Wilde; Stephen R. McCauley; Jill V. Hunter; Harvey S. Levin

Generalized whole brain volume loss has been well documented in moderate-to-severe traumatic brain injury (TBI), as has diffuse cerebral atrophy based on magnetic resonance imaging (MRI) volumetric methods where white matter may be more selectively affected than gray matter. However, specific regional differences in gray matter thickness of the cortical mantle have not been previously examined. As such, cortical thickness was assessed using FreeSurfer software to identify regions of significant gray matter cortical thinning in MRI scans of 16 young TBI subjects (age range, 9-16 years) compared to 16 demographically matched controls. Significant cortical thinning was observed globally in the TBI group compared to the cohort of typically developing children. Reduced cortical thickness was related to reported deficits in working memory. TBI-induced cortical thickness reductions are probably due to a combination of focal and diffuse effects and have implications for the neurobehavioral sequelae of TBI.


NeuroImage | 2010

Diffuse damage in pediatric traumatic brain injury: a comparison of automated versus operator-controlled quantification methods.

Erin D. Bigler; Tracy J. Abildskov; Elisabeth A. Wilde; Stephen R. McCauley; Xiaoqi Li; Tricia L. Merkley; Michael A. Fearing; Mary R. Newsome; Randall S. Scheibel; Jill V. Hunter; Zili Chu; Harvey S. Levin

This investigation had two main objectives: 1) to assess the comparability of volumes determined by operator-controlled image quantification with automated image analysis in evaluating atrophic brain changes related to traumatic brain injury (TBI) in children, and 2) to assess the extent of diffuse structural changes throughout the brain as determined by reduced volume of a brain structure or region of interest (ROI). Operator-controlled methods used ANALYZE software for segmentation and tracing routines of pre-defined brain structures and ROIs. For automated image analyses, the open-access FreeSurfer program was used. Sixteen children with moderate-to-severe TBI were compared to individually matched, typically developing control children and the volumes of 18 brain structures and/or ROIs were compared between the two methods. Both methods detected atrophic changes but differed in the magnitude of the atrophic effect with the best agreement in subcortical structures. The volumes of all brain structures/ROIs were smaller in the TBI group regardless of method used; overall effect size differences were minimal for caudate and putamen but moderate to large for all other measures. This is reflective of the diffuse nature of TBI and its widespread impact on structural brain integrity, indicating that both FreeSurfer and operator-controlled methods can reliably assess cross-sectional volumetric changes in pediatric TBI.


International Journal of Developmental Neuroscience | 2012

Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control.

Elisabeth A. Wilde; Tricia L. Merkley; Erin D. Bigler; Jeffrey E. Max; Adam T. Schmidt; Kareem W. Ayoub; Stephen R. McCauley; Jill V. Hunter; Gerri Hanten; Xiansheng Li; Zili D. Chu; Harvey S. Levin

The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post‐TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post‐injury in 20 children aged 8.2–17.5 years who had sustained moderate‐to‐severe closed head injury and 21 children aged 7.4–16.7 years who had sustained OI. At approximately 3 months post‐injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI‐induced change. At 18 months post‐injury, some of the regions previously evident at 3 months post‐injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post‐injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable “sparing” of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months–3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe.


International Journal of Psychophysiology | 2011

Brain Imaging Correlates of Verbal Working Memory in Children Following Traumatic Brain Injury

Elisabeth A. Wilde; Mary R. Newsome; Erin D. Bigler; Jon L. Pertab; Tricia L. Merkley; Gerri Hanten; Randall S. Scheibel; Xiaoqi Li; Zili Chu; Ragini Yallampalli; Jill V. Hunter; Harvey S. Levin

Neural correlates of working memory (WM) based on the Sternberg Item Recognition Task (SIRT) were assessed in 40 children with moderate-to-severe traumatic brain injury (TBI) compared to 41 demographically-comparable children with orthopedic injury (OI). Multiple magnetic resonance imaging (MRI) methods assessed structural and functional brain correlates of WM, including volumetric and cortical thickness measures on all children; functional MRI (fMRI) and diffusion tensor imaging (DTI) were performed on a subset of children. Confirming previous findings, children with TBI had decreased cortical thickness and volume as compared to the OI group. Although the findings did not confirm the predicted relation of decreased frontal lobe cortical thickness and volume to SIRT performance, left parietal volume was negatively related to reaction time (RT). In contrast, cortical thickness was positively related to SIRT accuracy and RT in the OI group, particularly in aspects of the frontal and parietal lobes, but these relationships were less robust in the TBI group. We attribute these findings to disrupted fronto-parietal functioning in attention and WM. fMRI results from a subsample demonstrated fronto-temporal activation in the OI group, and parietal activation in the TBI group, and DTI findings reflected multiple differences in white matter tracts that engage fronto-parietal networks. Diminished white matter integrity of the frontal lobes and cingulum bundle as measured by DTI was associated with longer RT on the SIRT. Across modalities, the cingulate emerged as a common structure related to performance after TBI. These results are discussed in terms of how different imaging modalities tap different types of pathologic correlates of brain injury and their relationship with WM.


Journal of Neurotrauma | 2014

Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury.

Barbara L. Fischer; Michael W. Parsons; Sally Durgerian; Christine Reece; Lyla Mourany; Mark J. Lowe; Erik B. Beall; Katherine A. Koenig; Stephen E. Jones; Mary R. Newsome; Randall S. Scheibel; Elisabeth A. Wilde; Maya Troyanskaya; Tricia L. Merkley; Mark F. Walker; Harvey S. Levin; Stephen M. Rao

Military personnel involved in Operations Enduring Freedom and Iraqi Freedom (OEF/OIF) commonly experience blast-induced mild to moderate traumatic brain injury (TBI). In this study, we used task-activated functional MRI (fMRI) to determine if blast-related TBI has a differential impact on brain activation in comparison with TBI caused primarily by mechanical forces in civilian settings. Four groups participated: (1) blast-related military TBI (milTBI; n=21); (2) military controls (milCON; n=22); (3) non-blast civilian TBI (civTBI; n=21); and (4) civilian controls (civCON; n=23) with orthopedic injuries. Mild to moderate TBI (MTBI) occurred 1 to 6 years before enrollment. Participants completed the Stop Signal Task (SST), a measure of inhibitory control, while undergoing fMRI. Brain activation was evaluated with 2 (mil, civ)×2 (TBI, CON) analyses of variance, corrected for multiple comparisons. During correct inhibitions, fMRI activation was lower in the TBI than CON subjects in regions commonly associated with inhibitory control and the default mode network. In contrast, inhibitory failures showed significant interaction effects in the bilateral inferior temporal, left superior temporal, caudate, and cerebellar regions. Specifically, the milTBI group demonstrated more activation than the milCON group when failing to inhibit; in contrast, the civTBI group exhibited less activation than the civCON group. Covariance analyses controlling for the effects of education and self-reported psychological symptoms did not alter the brain activation findings. These results indicate that the chronic effects of TBI are associated with abnormal brain activation during successful response inhibition. During failed inhibition, the pattern of activation distinguished military from civilian TBI, suggesting that blast-related TBI has a unique effect on brain function that can be distinguished from TBI resulting from mechanical forces associated with sports or motor vehicle accidents. The implications of these findings for diagnosis and treatment of TBI are discussed.


Journal of Neurotrauma | 2015

Chronic Aspects of Pediatric Traumatic Brain Injury: Review of the Literature

Talin Babikian; Tricia L. Merkley; Ronald C. Savage; Christopher C. Giza; Harvey S. Levin

Traumatic brain injury (TBI) in children, while the brain is in a state of rapid change and development, can adversely impact their development, their extended environment, and their families. The extant literature has identified several physiological, genetic, and environmental variables that predict outcomes after pediatric TBI; nonetheless, the individual course of recovery and later development of a given child is uniquely shaped by injury-related factors (e.g., nature and extent of the injury itself, the developmental status of the child) as well as a number of personal and family variables (e.g., pre-injury cognitive, genetic, and psychological status of the child, family functioning and resources, coping style). Further, the effects of a brain injury during development may or may not become evident immediately after injury depending on a number of factors. Instead, observing trajectories of development over time may allow for a better understanding of the long-term consequences in many functional domains that interest researchers, clinicians, and families. The current article reviews the chronic aspects of medical/health, cognitive/academic, emotional/behavioral, and family/social outcomes after pediatric TBI, with the goal of providing monitoring and treatment strategies for affected children and their families, as well as serving as a resource for researchers designing studies to better understand this heterogeneous population.


Developmental Neuropsychology | 2010

Patterns of Cortical Thinning in Relation to Event-Based Prospective Memory Performance Three Months after Moderate to Severe Traumatic Brain Injury in Children

McCauley; Elisabeth A. Wilde; Tricia L. Merkley; Kathleen P. Schnelle; Erin D. Bigler; Jill V. Hunter; Z. Chu; Ana C. Vasquez; Harvey S. Levin

While event-based prospective memory (EB-PM) tasks are a familiar part of daily life for children, currently no data exists concerning the relation between EB-PM performance and brain volumetrics after traumatic brain injury (TBI). This study investigated EB-PM in children (7 to 17 years) with moderate to severe TBI or orthopedic injuries. Participants performed an EB-PM task and concurrently underwent neuroimaging at three months postinjury. Surface reconstruction and cortical thickness analysis were performed using FreeSurfer software. Cortical thickness was significantly correlated with EB-PM (adjusting for age). Significant thinning in the left (dorsolateral and inferior prefrontal cortex, anterior and posterior cingulate, temporal lobe, fusiform, and parahippocampal gyri), and right hemispheres (dorsolateral, inferior, and medial prefrontal cortex, cingulate, and temporal lobe) correlated positively and significantly with EB-PM performance; findings are comparable to those of functional neuroimaging and lesion studies of EB-PM.


Frontiers in Human Neuroscience | 2010

Deficits in analogical reasoning in adolescents with traumatic brain injury.

Daniel C. Krawczyk; Gerri Hanten; Elisabeth A. Wilde; Xiansheng Li; Kathleen P. Schnelle; Tricia L. Merkley; Ana C. Vasquez; Lori G. Cook; M. Michelle McClelland; Sandra B. Chapman; Harvey S. Levin

Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-living items in the problems). We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical–behavior correlations as observed in TD individuals.


Journal of Neurotrauma | 2011

Diffusion Tensor Imaging of the Perforant Pathway Zone and Its Relation to Memory Function in Patients with Severe Traumatic Brain Injury

Foteini Christidi; Erin D. Bigler; Stephen R. McCauley; Kathleen P. Schnelle; Tricia L. Merkley; Matthew B. Mors; Xiaoqi Li; Marianne MacLeod; Zili Chu; Jill V. Hunter; Harvey S. Levin; Guy L. Clifton; Elisabeth A. Wilde

Based on the importance of the perforant pathway (PP) for normal hippocampal function, the vulnerability of temporal structures, and significant memory impairment in patients with traumatic brain injury (TBI), we investigated in vivo changes in the PP zone, hippocampus, and temporal lobe white and gray matter using diffusion tensor imaging (DTI) and volumetric analysis, and any specific relations with memory performance (Verbal Selective Reminding Test, Rey-Osterrieth Complex Figure Test), in 14 patients with severe TBI. Compared to a demographically-similar control group, our patients had significantly decreased fractional anisotropy (FA) and higher apparent diffusion coefficient (ADC) for the PP zone bilaterally, and higher ADC bilaterally in the hippocampus. Volumetric analysis revealed significantly decreased volumes in both hippocampi and temporal gray matter bilaterally. Consistent long-term retrieval (CLTR) and delayed recall were significantly related to (1) right and left PP zone ADC, (2) left hippocampus ADC, and (3) left hippocampal volume. Nonverbal memory (immediate and delayed recall) was significantly associated with (1) right and left PP zone ADC, (2) left hippocampal volume, and (3) gray (immediate recall) and white (immediate recall, bilaterally; delayed recall, left) matter temporal volumes. Advanced neuroimaging analysis can detect in vivo changes in the PP zone and temporal structures in patients with severe TBI, with these changes being highly associated with memory impairment.

Collaboration


Dive into the Tricia L. Merkley's collaboration.

Top Co-Authors

Avatar

Harvey S. Levin

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin D. Bigler

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Jill V. Hunter

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana C. Vasquez

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gerri Hanten

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kathleen P. Schnelle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoqi Li

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge