Tripp Frasch
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tripp Frasch.
Molecular Endocrinology | 2012
Lulu Mao; Robert T. Dauchy; David E. Blask; Lauren M. Slakey; Shulin Xiang; Lin Yuan; Erin M. Dauchy; Bin Shan; George C. Brainard; John P. Hanifin; Tripp Frasch; Tamika Duplessis; Steven M. Hill
Disturbed sleep-wake cycle and circadian rhythmicity are associated with cancer, but the underlying mechanisms are unknown. Employing a tissue-isolated human breast xenograft tumor nude rat model, we observed that glycogen synthase kinase 3β (GSK3β), an enzyme critical in metabolism and cell proliferation/survival, exhibits a circadian rhythm of phosphorylation in human breast tumors. Exposure to light-at-night suppresses the nocturnal pineal melatonin synthesis, disrupting the circadian rhythm of GSK3β phosphorylation. Melatonin activates GSK3β by inhibiting the serine-threonine kinase Akt phosphorylation, inducing β-catenin degradation and inhibiting epithelial-to-mesenchymal transition, a fundamental process underlying cancer metastasis. Thus, chronic circadian disruption by light-at-night via occupational exposure or age-related sleep disturbances may contribute to cancer incidence and the metastatic spread of breast cancer by inhibiting GSK3β activity and driving epithelial-to-mesenchymal transition in breast cancer patients.
Integrative Cancer Therapies | 2009
Steven M. Hill; Tripp Frasch; Shulin Xiang; Lin Yuan; Tamika Duplessis; Lulu Mao
The authors have shown that, via activation of its MT1 receptor, melatonin modulates the transcriptional activity of various nuclear receptors and the proliferation of both ERα+ and ERα- human breast cancer cells. Employing dominant-negative (DN) and dominant-positive (DP) G proteins, it was demonstrated that Gα i2 proteins mediate the suppression of estrogen-induced ERα transcriptional activity by melatonin, whereas the Gαq proteins mediate the enhancement of retinoid-induced RARα transcriptional activity by melatonin. In primary human breast tumors, the authors’ studies demonstrate an inverse correlation between ERα and MT1 receptor expression, and confocal microscopic studies demonstrate that the MT1I receptor is localized to the caveoli and that its expression can be repressed by estrogen and melatonin. Melatonin, via activation of its MT1 receptor, suppresses the development and growth of breast cancer by regulation of growth factors, regulation of gene expression, regulation of clock genes, inhibition of tumor cell invasion and metastasis, and even regulation of mammary gland development. The authors have previously reported that the clock gene, Period 2 (Per2), is not expressed in human breast cancer cells but that its reexpression in breast cancer cells results in increased expression of p53 and induction of apoptosis. The authors demonstrate that melatonin, via repression of RORα transcriptional activity, blocks the expression of the clock gene BMAL1 . Melatonin’s blockade of BMAL1 expression is associated with the decreased expression of SIRT1, a member of the Silencing Information Regulator family and a histone and protein deacetylase that inhibits the expression of DNA repair enzymes (p53, BRCA1 & 2, and Ku70) and the expression of apoptosis-associated genes. Finally, the authors developed an MMTV-MT1-flag mammary knock-in transgenic mouse that displays reduced ductal branching, ductal epithelium proliferation, and reduced terminal end bud formation during puberty and pregnancy. Lactating female MT1 transgenic mice show a dramatic reduction in the expression of β-casein and whey acidic milk proteins. Further analyses showed significantly reduced ERα expression in mammary glands of MT1 transgenic mice. These results demonstrate that the MT1 receptor is a major transducer of melatonin’s actions in the breast, suppressing mammary gland development and mediating the anticancer actions of melatonin through multiple pathways.
Endocrine-related Cancer | 2015
Steven M. Hill; Victoria P. Belancio; Robert T. Dauchy; Shulin Xiang; Samantha Brimer; Lulu Mao; Adam Hauch; Peter W. Lundberg; Whitney Summers; Lin Yuan; Tripp Frasch; David E. Blask
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.
Cancer Research | 2014
Robert T. Dauchy; Shulin Xiang; Lulu Mao; Samantha Brimer; Melissa A. Wren; Lin Yuan; Muralidharan Anbalagan; Adam Hauch; Tripp Frasch; Brian G. Rowan; David E. Blask; Steven M. Hill
Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen.
Journal of Mammary Gland Biology and Neoplasia | 2011
Steven M. Hill; David E. Blask; Shulin Xiang; Lin Yuan; Lulu Mao; Robert T. Dauchy; Erin M. Dauchy; Tripp Frasch; Tamika Duplesis
This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular and metabolic signaling mechanisms involved in human breast cancer growth and the associated consequences of circadian disruption by exposure to light-at-night (LAN). The anti-proliferative effects of the circadian melatonin signal are, in general, mediated through mechanisms involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor-positive (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT1-induced activation of Gαi2 signaling and reduction of cAMP levels. Melatonin also regulates the transcriptional activity of additional members of the nuclear receptor super-family, enzymes involved in estrogen metabolism, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and matrix metalloproteinase expression. Melatonin also inhibits the growth of human breast cancer xenografts via MT1-mediated suppression of cAMP leading to a blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Finally, studies in both rats and humans indicate that light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Journal of Pineal Research | 2015
Shulin Xiang; Robert T. Dauchy; Adam Hauch; Lulu Mao; Lin Yuan; Melissa A. Wren; Victoria P. Belancio; Debasis Mondal; Tripp Frasch; David E. Blask; Steven M. Hill
Chemotherapeutic resistance, particularly to doxorubicin (Dox), represents a major impediment to successfully treating breast cancer and is linked to elevated tumor metabolism and tumor over‐expression and/or activation of various families of receptor‐ and non‐receptor‐associated tyrosine kinases. Disruption of circadian time structure and suppression of nocturnal melatonin production by dim light exposure at night (dLEN), as occurs with shift work, and/or disturbed sleep–wake cycles, is associated with a significantly increased risk of an array of diseases, including breast cancer. Melatonin inhibits human breast cancer growth via mechanisms that include the suppression of tumor metabolism and inhibition of expression or phospho‐activation of the receptor kinases AKT and ERK1/2 and various other kinases and transcription factors. We demonstrate in tissue‐isolated estrogen receptor alpha‐positive (ERα+) MCF‐7 human breast cancer xenografts, grown in nude rats maintained on a light/dark cycle of LD 12:12 in which dLEN is present during the dark phase (suppressed endogenous nocturnal melatonin), a significant shortening of tumor latency‐to‐onset, increased tumor metabolism and growth, and complete intrinsic resistance to Dox therapy. Conversely, a LD 12:12 dLEN environment incorporating nocturnal melatonin replacement resulted in significantly lengthened tumor latency‐to‐onset, tumor regression, suppression of nighttime tumor metabolism, and kinase and transcription factor phosphorylation, while Dox sensitivity was completely restored. Melatonin acts as both a tumor metabolic inhibitor and circadian‐regulated kinase inhibitor to reestablish the sensitivity of breast tumors to Dox and drive tumor regression, indicating that dLEN‐induced circadian disruption of nocturnal melatonin production contributes to a complete loss of tumor sensitivity to Dox chemotherapy.
Breast Cancer Research and Treatment | 2011
Steven M. Hill; Chi Cheng; Lin Yuan; Lulu Mao; Ralf Jockers; Bob Dauchy; Tripp Frasch; David E. Blask
Serum melatonin (MLT) levels have been reported to diminish significantly by the 5th and 6th decades of life as the incidence of breast cancer increases. Given MLT’s anti-cancer activity, we hypothesize that age-related decline in pineal MLT production leads to enhanced breast cancer development and growth as women age. In this study, we sought to determine whether the growth of tissue-isolated mammary tumors in young, adult, and old female Buffalo rats relates to the age-related changes in MLT and its MT1 receptor. Significant decreases in the peak nighttime serum MLT levels were observed in old as compared to adult and young rats. Significantly diminished nighttime and early morning levels of MT1-melatonin receptors were observed in uteri from old rats compared to adult and young rats. Growth rates in transplanted, tissue-isolated, carcinogen-induced mammary tumors are significantly increased in old rats as compared to adult or young rats. The growth-suppressive actions of exogenous MLT are diminished in old rats compared to adult and young rats. This decrease in tumor response correlates with reduced expression of the MT1 receptor in old as compared to young and adult rats. Thus, enhanced mammary tumor growth is associated with old age and diminished levels of MLT and MT1 receptor during old age, resulting in reduced sensitivity to exogenous MLT. Finally, our studies demonstrate that the tissue-isolated tumor model is viable model system in which to study the role of aging on breast cancer growth.
Journal of Pineal Research | 2008
Ling Lai; Lin Yuan; Qi Chen; Chunmin Dong; Lulu Mao; Brian G. Rowan; Tripp Frasch; Steven M. Hill
Abstract: Melatonin, via its MT1 receptor, but not the MT2 receptor, can modulate the transcriptional activity of various nuclear receptors – estrogen receptor alpha (ERα) and retinoic acid receptor alpha (RARα), but not ERβ– in MCF‐7, T47D, and ZR‐75‐1 human breast cancer cell lines. The anti‐proliferative and nuclear receptor modulatory actions of melatonin are mediated via the MT1 G protein‐coupled receptor expressed in human breast cancer cells. However, the specific G proteins and associated pathways involved in the nuclear receptor transcriptional regulation by melatonin are not yet clear. Upon activation, the MT1 receptor specifically couples to the Gαi2, Gαi3, Gαq, and Gαll proteins, and via activation of Gαi2 proteins, melatonin suppresses forskolin‐induced 3′,5′‐cyclic adenosine monophosphate production, while melatonin activation of Gαq, is able to inhibit phospholipid hydrolysis and ATP’s induction of inositol triphosphate production in MCF‐7 breast cancer cells. Employing dominant‐negative and dominant‐positive) forms of these G proteins, we demonstrate that Gαi2 proteins mediate the suppression of estrogen‐induced ERα transcriptional activity by melatonin, while the Gq protein mediates the enhancement of retinoid‐induced RARα transcriptional activity by melatonin. However, the growth‐inhibitory actions of melatonin are mediated via both Gαi2 and Gαq proteins.
Journal of Pineal Research | 2016
Lulu Mao; Robert T. Dauchy; David E. Blask; Erin M. Dauchy; Lauren M. Slakey; Samantha Brimer; Lin Yuan; Shulin Xiang; Adam Hauch; Kara Smith; Tripp Frasch; Victoria P. Belancio; Melissa A. Wren; Steven M. Hill
Leiomyosarcoma (LMS) represents a highly malignant, rare soft tissue sarcoma with high rates of morbidity and mortality. Previously, we demonstrated that tissue‐isolated human LMS xenografts perfused in situ are highly sensitive to the direct anticancer effects of physiological nocturnal blood levels of melatonin which inhibited tumour cell proliferative activity, linoleic acid (LA) uptake and metabolism to 13‐hydroxyoctadecadienoic acid (13‐HODE). Here, we show the effects of low pharmacological blood concentrations of melatonin following oral ingestion of a melatonin supplement by healthy adult human female subjects on tumour proliferative activity, aerobic glycolysis (Warburg effect) and LA metabolic signalling in tissue‐isolated LMS xenografts perfused in situ with this blood. Melatonin markedly suppressed aerobic glycolysis and induced a complete inhibition of tumour LA uptake, 13‐HODE release, as well as significant reductions in tumour cAMP levels, DNA content and [3H]‐thymidine incorporation into DNA. Furthermore, melatonin completely suppressed the phospho‐activation of ERK 1/2, AKT, GSK3β and NF‐kB (p65). The addition of S20928, a nonselective melatonin antagonist, reversed these melatonin inhibitory effects. Moreover, in in vitro cell culture studies, physiological concentrations of melatonin repressed cell proliferation and cell invasion. These results demonstrate that nocturnal melatonin directly inhibited tumour growth and invasion of human LMS via suppression of the Warburg effect, LA uptake and other related signalling mechanisms. An understanding of these novel signalling pathway(s) and their association with aerobic glycolysis and LA metabolism in human LMS may lead to new circadian‐based therapies for the prevention and treatment of LMS and potentially other mesenchymally derived solid tumours.
Molecular Cancer Research | 2016
Lulu Mao; Whitney Summers; Shulin Xiang; Lin Yuan; Robert T. Dauchy; Amberly Reynolds; Melissa A. Wren-Dail; David T. Pointer; Tripp Frasch; David E. Blask; Steven M. Hill
The importance of the circadian/melatonin signal in suppressing the metastatic progression of breast and other cancers has been reported by numerous laboratories including our own. Currently, the mechanisms underlying the antimetastatic actions of melatonin have not been well established. In the present study, the antimetastatic actions of melatonin were evaluated and compared on the ERα-negative, Her2-positive SKBR-3 breast tumor cell line and ERα-positive MCF-7 cells overexpressing a constitutively active HER2.1 construct (MCF-7Her2.1 cells). Activation of Her2 is reported to induce the expression and/or phosphorylation-dependent activation of numerous kinases and transcription factors that drive drug resistance and metastasis in breast cancer. A key signaling node activated by the Her2/Mapk/Erk pathway is Rsk2, which has been shown to induce numerous signaling pathways associated with the development of epithelial-to-mesenchymal transition (EMT) and metastasis including: Creb, Stat3, cSrc, Fak, Pax, Fascin, and actin polymerization. The data demonstrate that melatonin (both endogenous and exogenous) significantly represses this invasive/metastatic phenotype through a mechanism that involves the suppression of EMT, either by promoting mesenchymal-to-epithelial transition, and/or by inhibiting key signaling pathways involved in later stages of metastasis. These data, combined with our earlier in vitro studies, support the concept that maintenance of elevated and extended duration of nocturnal melatonin levels plays a critical role in repressing the metastatic progression of breast cancer. Implications: Melatonin inhibition of Rsk2 represses the metastatic phenotype in breast cancer cells suppressing EMT or inhibiting other mechanisms that promote metastasis; disruption of the melatonin signal may promote metastatic progression in breast cancer. Mol Cancer Res; 14(11); 1159–69. ©2016 AACR.