Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trisha A. Jenkins is active.

Publication


Featured researches published by Trisha A. Jenkins.


Brain Research Bulletin | 1998

Angiotensin receptors in the nervous system

Andrew M. Allen; Ingrid Moeller; Trisha A. Jenkins; Jialong Zhuo; G.P. Aldred; Syn Y Chai; Frederick A.O. Mendelsohn

In addition to its traditional role as a circulating hormone, angiotensin is also involved in local functions through the activity of tissue renin-angiotensin systems that occur in many organs, including the brain. In the brain, both systemic and presumptive neurally derived angiotensin and angiotensin metabolites act through specific receptors to modulate many functions. This review examines the distribution of these specific angiotensin receptors and discusses evidence regarding the function of angiotensin peptides in various brain regions. Angiotensin AT1 and AT2 receptors occur in characteristic distributions that are highly correlated with the distribution of angiotensin-like immunoreactivity in nerve terminals. Acting through the AT1 receptor in the brain, angiotensin has effects on fluid and electrolyte homeostasis, neuroendocrine systems, autonomic pathways regulating cardiovascular function and behavior. Angiotensin AT1 receptors are also found in many afferent and efferent components of the peripheral autonomic nervous system. The role of the AT2 receptor in the brain is less well understood, although recent knockout studies point to an involvement with behavioral and cardiovascular functions. In addition to the AT1 and AT2 receptors, receptors for other fragments of angiotensin have been proposed. The AT4 binding site, which binds angiotensin, has a widespread distribution in the brain quite distinct from that of the AT1 and AT2 receptors. It is associated with many cholinergic neuronal groups and also several sensory nuclei, but its function remains to be determined. Our discovery that another brain-derived peptide binds to the AT4 binding site in the brain and may represent the native ligand is discussed. Overall, the distribution of angiotensin receptors in the brain indicate that they play diverse and important physiological roles in the nervous system.


Cellular and Molecular Life Sciences | 2004

The angiotensin IV/AT4 receptor.

Siew Yeen Chai; Ruani N. Fernando; Grantley Ross Peck; Siying Ye; Frederick A.O. Mendelsohn; Trisha A. Jenkins; Anthony L. Albiston

Abstract.The angiotensin AT4 receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT4 receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT4 receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na+ transport in isolated renal proximal tubules. The AT4 receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT4 receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.


Brain Research | 1993

Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats.

Frederick A.O. Medelsohn; Trisha A. Jenkins; Samuel F. Berkovic

This study was designed to evaluate the functional significance of angiotensin II (Ang II) receptors identified by previous receptor autoradiography studies to be located presynaptically on terminals of dopaminergic neurones projecting to the striatum. Microdialysis was performed in the striatum of conscious freely moving rats and dopamine and serotonin metabolites measured by HPLC with electrochemical detection. During perfusion with artificial CSF, the major extracellular dopamine metabolite identified was DOPAC with smaller concentrations of HVA. When Ang II (1 microM) was introduced into the dialysis perfusion medium, DOPAC output increased markedly, peaking at 219%, and returned to control with vehicle perfusion during the recovery period. This increase in DOPAC output with Ang II was completely blocked by co-administration of the AT1 selective antagonist, Losartan (1 microM). Administration of Losartan alone led to a significant (16%) depression of DOPAC output relative to vehicle, suggesting that dopamine release is under a tonic facilitatory influence of Ang II via the AT1 receptor subtype. Parallel, but smaller changes were seen with HVA outputs. During Ang II perfusion the output of HVA was elevated 34-79% of that in vehicle-treated rats and this effect was completely abolished by concomitant administration of Losartan. As was observed with DOPAC output, administration of Losartan alone led to a 13-24% depression of HVA output compared to vehicle perfusion. When nomifensine (10 microM) was included in the infusion fluid, dopamine was clearly measurable. Ang II perfusion increased the levels of dopamine to 225%. Values returned towards baseline during the recovery period. Ang II administration also increased (by 15% and 55%) the levels of the major serotonin metabolite, 5HIAA.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Hypertension | 1998

Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors.

Jialong Zhuo; Ingrid Moeller; Trisha A. Jenkins; Siew Yeen Chai; Andrew M. Allen; Mitsuru Ohishi; Frederick A.O. Mendelsohn

Background The renin–angiotensin system (RAS) functions as both a circulating endocrine system and a tissue paracrine/autocrine system. As a circulating peptide, angiotensin II (Ang II) plays a prominent role in blood-pressure control and body fluid and electrolyte balance by acting on the AT1 receptor in the brain and peripheral tissues. As a paracrine/autocrine peptide, locally formed Ang II also plays additional roles in tissues involving the regulation of regional haemodynamics, cell growth and remodelling, and neurotransmitter release. Evidence is emerging that Ang II is not the only active peptide of the RAS, and other Ang II fragments may also have important biological activities. Objectives To provide a morphological basis for understanding novel actions of angiotensin-converting enzyme (ACE), Ang II and related peptides in tissues, this article will review the localization of ACE and AT1, AT2 and AT4 receptors in the central nervous system, blood vessels and kidney. Results and conclusion Autoradiographic mapping of the major components of the RAS has proved a valuable strategy to reveal, or suggest, cellular sites of novel actions for Ang II and related peptides in tissues. First, colocalization of ACE and AT1 receptors in the substantia nigra, the caudate nucleus and putamen of human and rat brain, which contain the dopamine-synthesizing neurons, suggests that the central RAS may be important in modulating central dopamine release. Secondly, the distribution of AT4 receptors with a striking association with cholinergic neurons, motor and sensory nuclei in the brain reveals that Ang IV may modulate central motor and sensory activities and memory. Thirdly, the occurrence of high levels of ACE and AT1 and/or AT2 receptors in the adventitia of blood vessels suggests important paracrine roles of the vascular RAS. Finally, the identification of abundant AT1 receptor and elucidation of its roles in the renomedullary interstitial cells of the kidney may provide a new impetus to study further the role of Ang II in the regulation of renal medullary function and blood pressure. Overall, circulating and locally produced Ang II and related peptides may exert a remarkable range of actions in the brain, kidney and cardiovascular system through multiple angiotensin receptors.


Journal of Neurochemistry | 2002

Angiotensin‐Converting Enzyme Modulates Dopamine Turnover in the Striatum

Trisha A. Jenkins; Frederick A.O. Mendelsohn; Siew Yeen Chai

Abstract: The effect of chronic inhibition of the angiotensin‐converting enzyme on dopamine content and release in the striatum was investigated using in vivo microdialysis in awake, freely moving rats. Rats were treated for 1 week with the angiotensin‐converting enzyme inhibitor perindopril (1 mg/kg) via the drinking water, whereas the controls were given water alone. One week after perindopril treatment, striatal dopamine dialysate levels in the treated group were markedly elevated compared with control values: control, 233 ± 43 pg/ml; perindopril, 635 ± 53 pg/ml (p < 0.001). These results were confirmed by a complementary study in which dopamine content was measured in striatal extracts (3.5 ± 0.4 µg of dopamine/g of tissue for controls compared with 9.2 ± 2.4 µg of dopamine/g of tissue for the treated group; p < 0.05). In the rats that were dialyzed, angiotensin‐converting enzyme levels in the striatum were decreased by 50% after perindopril treatment. Levels of dopamine D1 and D2 receptors and of preprotachykinin and tyrosine hydroxylase mRNAs were unchanged after angiotensin‐converting enzyme inhibition. A small, but significant, increase was detected in striatal preproenkephalin mRNA levels in the angiotensin‐converting enzyme inhibitor‐treated group. These results indicate that peripherally administered angiotensin‐converting enzyme inhibitors penetrate the blood‐brain barrier when given chronically and modulate extracellular dopamine and striatal neuropeptide levels.


Journal of Neurochemistry | 2002

Effect of Chronic Angiotensin‐Converting Enzyme Inhibition on Striatal Dopamine Content in the MPTP‐Treated Mouse

Trisha A. Jenkins; John Y. F. Wong; David W. Howells; Frederick A.O. Mendelsohn; Siew Yeen Chai

Abstract: We have previously shown that chronic treatment with the angiotensin‐converting enzyme inhibitor perindopril increased striatal dopamine levels by 2.5‐fold in normal Sprague—Dawley rats, possibly via modulation of the striatal opioid or tachykinin levels. In the present study, we investigated if this effect of perindopril persists in an animal model of Parkinson’s disease, the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐treated mouse. C57BL/6 mice were treated with the neurotoxin (30 mg/kg/day intraperitoneally) for 4 days and then left for 3 weeks to allow the degeneration of striatal dopaminergic terminals. At this time, the mice exhibited a 40% decrease in striatal dopamine content and an accompanying 46% increase in dopamine D2 receptor levels compared with control untreated mice. The dopamine content returned to control levels, and the increase in dopamine D2 receptor levels was attenuated in mice treated with perindopril (5 mg/kg/day orally for 7 days) 2 weeks after the last dose of MPTP. When the angiotensin‐converting enzyme inhibitor was administered (5 mg/kg/day for 7 days) immediately after the cessation of the MPTP treatment, there was no reversal of the effect of the neurotoxin in decreasing striatal dopamine content. Our results demonstrate that perindopril is an effective agent in increasing striatal dopamine content in an animal model of Parkinson’s disease.


Advances in Experimental Medicine and Biology | 1996

Interactions of Angiotensin II with Central Dopamine

Trisha A. Jenkins; Andrew M. Allen; Syn Y Chai; Duncan MacGregor; George Paxinos; Frederick A.O. Mendelsohn

There is a large body of evidence to support the concept of a relationship between brain Ang II and catecholamine systems. This interaction may participate in some central actions of Ang II such as cardiovascular control, dipsogenesis, and complex behaviours. It also extends to the nigrostriatal dopaminergic system which bear AT1 receptors, both on their cell bodies in the substantia nigra presynaptically, and on their terminals in the striatum, where Ang II can markedly potentiate DA release. This observation suggests that drugs which modulate central Ang II may be useful in regulating central dopaminergic activity.


Brain Research | 1997

Upregulation of angiotensin II AT1 receptors in the mouse nucleus accumbens by chronic haloperidol treatment

Trisha A. Jenkins; Siew Yeen Chai; Frederick A.O. Mendelsohn

The distribution of angiotensin II AT1 and AT2 receptor subtypes were mapped in the mouse brain by in vitro autoradiography. Along with a differing distribution of AT1 and AT2 receptors in the hind brain compared to the rat, moderate densities of AT1 receptors were observed in dopamine-rich regions, namely the caudate putamen and nucleus accumbens, previously observed in the human, but not rat or rabbit. Considering our previous anatomical and functional studies demonstrating an interaction between brain angiotensin II and dopaminergic systems, the effect of chronic treatment with the dopamine antagonist, haloperidol, on AT1 and AT2 receptor levels was investigated in the mouse brain. Haloperidol treatment for 21 days resulted in an increase in angiotensin II AT1 receptor levels in the nucleus accumbens, accompanied by an increase in dopamine D2 receptors, but no change in dopamine D1 receptors. Striatal AT1 receptors did not alter with treatment, nor did AT1 or AT2 receptors in a number of brain regions not associated with dopaminergic systems, such as the median preoptic nucleus, paraventricular hypothalamic nucleus, and nucleus of the solitary tract. The present study suggests that brain angiotensin II-dopamine interactions extend beyond the known effects on the nigrostriatal dopaminergic system, to the mesocorticolimbic dopaminergic system.


Clinical and Experimental Hypertension | 1995

Interactions of Angiotensin II With Central Catecholamines

Trisha A. Jenkins; Andrew M. Allen; Syn Y Chai; Frederick A.O. Mendelsohn

There is a large body of anatomical and functional evidence supporting an interaction between brain angiotensin and central catecholamine systems. Angiotensin II AT1 receptors have been identified on dopamine containing cells in the substantia nigra and striatum of human brain using receptor autoradiography. Using in vivo microdialysis we have demonstrated that locally administered angiotensin II stimulates dopamine release from the striatum of conscious rats. Since some angiotensin receptor antagonists and angiotensin converting enzyme inhibitors can cross the blood brain barrier it is possible that they interact with the brain catecholaminergic systems.


Neurobiology of Learning and Memory | 2007

Effect of chronic angiotensin converting enzyme inhibition on spatial memory and anxiety-like behaviours in rats

Trisha A. Jenkins; Siew Yeen Chai

Angiotensin converting enzyme inhibitors (ACEis) are widely used anti-hypertensive agents that are also reported to have positive effects on mood and cognition. The present study examined the influence of the ACEi, perindopril, on cognitive performance and anxiety measures in rats. Two groups of rats were treated orally for one week with the ACEi, perindopril, at doses of 0.1 and 1.0mg/kg/day. Learning was assessed by the reference memory task in the water maze, comparing treated to control rats. Over five training days both perindopril-treated groups learnt the location of the submerged platform in the water maze task significantly faster than control rats. A 60s probe trial on day 6 showed that the 1.0mg/kg/day group spent significantly longer time in the training quadrant than control rats. This improved performance in the swim maze task was not due to the effect of perindopril on motor activity or the anxiety levels of the rats as perindopril-treated and control animals behaved similarly in activity boxes and on the elevated+maze. These results confirm the anecdotal human studies that ACEis have a positive influence on cognition and provide possibilities for ACEis to be developed into therapies for memory loss.

Collaboration


Dive into the Trisha A. Jenkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Syn Y Chai

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jialong Zhuo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge