Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trisha J. Grevengoed is active.

Publication


Featured researches published by Trisha J. Grevengoed.


Annual Review of Nutrition | 2014

Acyl-CoA Metabolism and Partitioning

Trisha J. Grevengoed; Eric L. Klett; Rosalind A. Coleman

Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.


Diabetes | 2015

Compartmentalized Acyl-CoA Metabolism in Skeletal Muscle Regulates Systemic Glucose Homeostasis

Lei O. Li; Trisha J. Grevengoed; David S. Paul; Olga Ilkayeva; Timothy R. Koves; Florencia Pascual; Christopher B. Newgard; Deborah M. Muoio; Rosalind A. Coleman

The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle–specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60–85% decrease in muscle FA oxidation. Acsl1M−/− mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise, Acsl1M−/− mice ran only 48% as far as controls. At the time that Acsl1M−/− mice were exhausted but control mice continued to run, liver and muscle glycogen and triacylglycerol stores were similar in both genotypes; however, plasma glucose concentrations in Acsl1M−/− mice were ∼40 mg/dL, whereas glucose concentrations in controls were ∼90 mg/dL. Excess use of glucose and the likely use of amino acids for fuel within muscle depleted glucose reserves and diminished substrate availability for hepatic gluconeogenesis. Surprisingly, the content of muscle acyl-CoA at exhaustion was markedly elevated, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for β-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis.


Cardiovascular Diabetology | 2015

MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet.

Jun He; Megan T. Quintana; Traci L. Parry; Trisha J. Grevengoed; Jonathan C. Schisler; Joseph A. Hill; Cecelia C. Yates; Rudo F. Mapanga; M. Faadiel Essop; William E. Stansfield; James R. Bain; Christopher B. Newgard; Michael J. Muehlbauer; Yipin Han; Brian A. Clarke; Monte S. Willis

BackgroundIn diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulated in the heart is largely unknown. Recent studies have described post-translational ubiquitination of PPARs as ways in which PPAR activity is inhibited in cancer. However, specific mechanisms in the heart have not previously been described. Recent studies have implicated the muscle-specific ubiquitin ligase muscle ring finger-2 (MuRF2) in inhibiting the nuclear transcription factor SRF. Initial studies of MuRF2−/− hearts revealed enhanced PPAR activity, leading to the hypothesis that MuRF2 regulates PPAR activity by post-translational ubiquitination.MethodsMuRF2−/− mice were challenged with a 26-week 60% fat diet designed to simulate obesity-mediated insulin resistance and diabetic cardiomyopathy. Mice were followed by conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1-regulated mRNA expression.ResultsMuRF2 protein levels increase ~20% during the development of diabetic cardiomyopathy induced by high fat diet. Compared to littermate wildtype hearts, MuRF2−/− hearts exhibit an exaggerated diabetic cardiomyopathy, characterized by an early onset systolic dysfunction, larger left ventricular mass, and higher heart weight. MuRF2−/− hearts had significantly increased PPARα- and PPARγ1-regulated gene expression by RT-qPCR, consistent with MuRF2’s regulation of these transcription factors in vivo. Mechanistically, MuRF2 mono-ubiquitinated PPARα and PPARγ1 in vitro, consistent with its non-degradatory role in diabetic cardiomyopathy. However, increasing MuRF2:PPARγ1 (>5:1) beyond physiological levels drove poly-ubiquitin-mediated degradation of PPARγ1 in vitro, indicating large MuRF2 increases may lead to PPAR degradation if found in other disease states.ConclusionsMutations in MuRF2 have been described to contribute to the severity of familial hypertrophic cardiomyopathy. The present study suggests that the lack of MuRF2, as found in these patients, can result in an exaggerated diabetic cardiomyopathy. These studies also identify MuRF2 as the first ubiquitin ligase to regulate cardiac PPARα and PPARγ1 activities in vivo via post-translational modification without degradation.


Journal of the American Heart Association | 2015

Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin.

Jonathan C. Schisler; Trisha J. Grevengoed; Florencia Pascual; Daniel E. Cooper; Jessica M. Ellis; David S. Paul; Monte S. Willis; Cam Patterson; Wei Jia; Rosalind A. Coleman

Background Long chain acyl‐CoA synthetases (ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results Metabolomics analysis identified 60 metabolites altered in Acsl1H−/− hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H−/− hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H−/− mice increased expression of several Hif1α‐responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid‐responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions The switch from FA to glucose use causes mTOR‐dependent alterations in cardiac metabolism. We identified cardiac mTOR‐regulated genes not previously identified in other cellular models, suggesting heart‐specific mTOR signaling. Increased glucose use also changed glutathione‐related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign.


Journal of Biological Chemistry | 2015

Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol.

Chongben Zhang; Gwen Hwarng; Daniel E. Cooper; Trisha J. Grevengoed; James M. Eaton; Viswanathan Natarajan; Thurl E. Harris; Rosalind A. Coleman

Background: The mechanism underlying the association of triacylglycerol storage and insulin resistance is unclear. Results: Increasing phosphatidic acid (PA) in primary hepatocytes via de novo synthesis or action of phospholipase D or diacylglycerol kinase-θ disrupts insulin signaling. Conclusion: PA derived from different sources inhibits insulin signaling. Significance: Increases in hepatocyte PA may mechanistically link lipid storage and insulin action. Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.


Journal of Bioenergetics and Biomembranes | 2014

MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

Taylor A. Mattox; Martin E. Young; Carrie Rubel; Carolyn Spaniel; Jessica E. Rodríguez; Trisha J. Grevengoed; Mathias Gautel; Zhelong Xu; Ethan J. Anderson; Monte S. Willis

MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1−/− mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1−/− hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.


Biochimica et Biophysica Acta | 2014

Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin.

David S. Paul; Trisha J. Grevengoed; Florencia Pascual; Jessica M. Ellis; Monte S. Willis; Rosalind A. Coleman

In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice.


American Journal of Physiology-endocrinology and Metabolism | 2014

Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor

Chongben Zhang; Daniel E. Cooper; Trisha J. Grevengoed; Lei O. Li; Eric L. Klett; James M. Eaton; Thurl E. Harris; Rosalind A. Coleman

Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictors association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.


The FASEB Journal | 2015

Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation

Trisha J. Grevengoed; Daniel E. Cooper; Pamela A. Young; Jessica M. Ellis; Rosalind A. Coleman

Because hearts with a temporally induced knockout of acyl‐CoA synthetase 1 (Acsl1T‐/‐) are virtually unable to oxidize fatty acids, glucose use increases 8‐fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1‐/‐ hearts contained 3 times more mitochondria with abnormal structure and displayed a 35‐43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1‐/‐ and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1 hearts, but did not improve ADP‐stimulated oxygen consumption, which was likely caused by the 33‐51% lower ATP synthase activity present in both vehicle‐ and rapamycin‐treated Acsl1T‐/‐ hearts. The turnover of microtubule associated protein light chain 3b in Acsl1T‐/‐ hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1‐fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long‐chain acyl‐CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.—Grevengoed, T. J., Cooper, D. E., Young, P. A., Ellis, J. M., Coleman, R. A. Loss of long‐chain acyl‐CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. FASEB J. 29, 4641‐4653 (2015). www.fasebj.org


Journal of Lipid Research | 2015

Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function

Trisha J. Grevengoed; Sarah A. Martin; Lalage A. Katunga; Daniel E. Cooper; Ethan J. Anderson; Robert C. Murphy; Rosalind A. Coleman

Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1T−/−) have impaired cardiac fatty acid oxidation and rely on glucose for ATP production. Because ACSL1 exhibited a strong substrate preference for linoleate, we investigated the composition of heart phospholipids. Acsl1T−/− hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts. A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of linoleate into CL and in diminished incorporation of palmitate and oleate into other phospholipids. Overexpression of ACSL1 in H9c2 and HEK-293 cells increased incorporation of linoleate into CL and other phospholipids. To determine whether increasing the content of linoleate in CL would improve mitochondrial respiratory function in Acsl1T−/− hearts, control and Acsl1T−/− mice were fed a high-linoleate diet; this diet normalized the amount of tetralinoleoyl-CL but did not improve respiratory function. Thus, ACSL1 is required for the normal composition of several phospholipid species in heart. Although ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not be required for normal function.

Collaboration


Dive into the Trisha J. Grevengoed's collaboration.

Top Co-Authors

Avatar

Rosalind A. Coleman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Monte S. Willis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Cooper

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David S. Paul

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Florencia Pascual

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Schisler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric L. Klett

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jessica M. Ellis

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge