Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tristan S. Maurer is active.

Publication


Featured researches published by Tristan S. Maurer.


Drug Metabolism and Disposition | 2007

Use of Plasma and Brain Unbound Fractions to Assess the Extent of Brain Distribution of 34 Drugs: Comparison of Unbound Concentration Ratios to in Vivo P-Glycoprotein Efflux Ratios

J. Cory Kalvass; Tristan S. Maurer; Gary M. Pollack

The P-glycoprotein (P-gp)-deficient mouse model is used to assess the influence of P-gp-mediated efflux on the central nervous system (CNS) distribution of drugs. The steady-state unbound plasma/unbound brain concentration ratio ([plasma],u/[brain],u) is an alternative method for assessing CNS distribution of drugs independent of the mechanism(s) involved. The objective of this study was to compare the degree of CNS distributional impairment determined from the in vivo P-gp efflux ratio with that determined from the [plasma],u/[brain],u ratio. CNS distribution of 34 drugs, including opioids, triptans, protease inhibitors, antihistamines, and other clinically relevant drugs with either poor CNS distribution or blood-brain barrier efflux, was studied. Plasma and brain unbound fractions were determined by equilibrium dialysis. Kp,brain and the P-gp efflux ratio were obtained from the literature or determined experimentally. The P-gp efflux ratio and the [plasma],u/[brain],u ratio were in concurrence (<3-fold difference) for 21 of the 34 drugs. However, the [plasma],u/[brain],u ratio exceeded the P-gp efflux ratio substantially (>4-fold) for 10 of the 34 drugs, suggesting that other, non-P-gp-mediated mechanism(s) may limit the CNS distribution of these drugs. The P-gp efflux ratio exceeded the [plasma],u/[brain],u ratio by more than 3-fold for three drugs, suggesting the presence of active uptake mechanism(s). These observations indicate that when mechanisms other than P-gp affect CNS distribution (non-P-gp-mediated efflux, poor passive permeability, cerebrospinal fluid bulk flow, metabolism, or active uptake), the P-gp efflux ratio may underestimate or overestimate CNS distributional impairment. The [plasma],u/[brain],u ratio provides a simple mechanism-independent alternative for assessing the CNS distribution of drugs.


Drug Metabolism and Disposition | 2008

A COMBINED MODEL FOR PREDICTING CYP3A4 CLINICAL NET DRUG-DRUG INTERACTION BASED ON CYP3A4 INHIBITION, INACTIVATION, AND INDUCTION DETERMINED IN VITRO

Odette A. Fahmi; Tristan S. Maurer; Mary Kish; Edwin Cardenas; Sherri Boldt; David O Nettleton

Although approaches to the prediction of drug-drug interactions (DDIs) arising via time-dependent inactivation have recently been developed, such approaches do not account for simple competitive inhibition or induction. Accordingly, these approaches do not provide accurate predictions of DDIs arising from simple competitive inhibition (e.g., ketoconazole) or induction of cytochromes P450 (e.g., phenytoin). In addition, methods that focus upon a single interaction mechanism are likely to yield misleading predictions in the face of mixed mechanisms (e.g., ritonavir). As such, we have developed a more comprehensive mathematical model that accounts for the simultaneous influences of competitive inhibition, time-dependent inactivation, and induction of CYP3A in both the liver and intestine to provide a net drug-drug interaction prediction in terms of area under the concentration-time curve ratio. This model provides a framework by which readily obtained in vitro values for competitive inhibition, time-dependent inactivation and induction for the precipitant compound as well as literature values for fm and FG for the object drug can be used to provide quantitative predictions of DDIs. Using this model, DDIs arising via inactivation (e.g., erythromycin) continue to be well predicted, whereas those arising via competitive inhibition (e.g., ketoconazole), induction (e.g., phenytoin), and mixed mechanisms (e.g., ritonavir) are also predicted within the ranges reported in the clinic. This comprehensive model quantitatively predicts clinical observations with reasonable accuracy and can be a valuable tool to evaluate candidate drugs and rationalize clinical DDIs.


Drug Metabolism and Disposition | 2006

Use of immortalized human hepatocytes to predict the magnitude of clinical drug-drug interactions caused by CYP3A4 induction.

Sharon L. Ripp; Jessica B. Mills; Odette A. Fahmi; Kristen A. Trevena; Jennifer Liras; Tristan S. Maurer; Sonia M. de Morais

Cytochrome P4503A4 (CYP3A4) is the principal drug-metabolizing enzyme in human liver. Drug-drug interactions (DDIs) caused by induction of CYP3A4 can result in decreased exposure to coadministered drugs, with potential loss of efficacy. Immortalized hepatocytes (Fa2N-4 cells) have been proposed as a tool to identify CYP3A4 inducers. The purpose of the current studies was to characterize the effect of known inducers on CYP3A4 in Fa2N-4 cells, and to determine whether these in vitro data could reliably project the magnitude of DDIs caused by induction. Twenty-four compounds were chosen for these studies, based on previously published data using primary human hepatocytes. Eighteen compounds had been shown to be positive for induction, and six compounds had been shown to be negative for induction. In Fa2N-4 cells, all 18 positive controls produced greater than 2-fold maximal CYP3A4 induction, and all 6 negative controls produced less than 1.5-fold maximal CYP3A4 induction. Subsequent studies were conducted to determine the relationship between in vitro induction data and in vivo induction response. The approach was to relate in vitro induction data (Emax and EC50 values) with efficacious free plasma concentrations to calculate a relative induction score. This score was then correlated with decreases in area under the plasma concentration versus time curve values for coadministered CYP3A4 object drugs (midazolam or ethinylestradiol) from previously published clinical DDI studies. Excellent correlations (r2 values >0.92) were obtained, suggesting that Fa2N-4 cells can be used for identification of inducers as well as prediction of the magnitude of clinical DDIs.


Journal of Medicinal Chemistry | 2011

Discovery of a Clinical Candidate from the Structurally Unique Dioxa-bicyclo[3.2.1]octane Class of Sodium-Dependent Glucose Cotransporter 2 Inhibitors

Vincent Mascitti; Tristan S. Maurer; Ralph P. Robinson; Jianwei Bian; Carine M. Boustany-Kari; Thomas A. Brandt; Benjamin Micah Collman; Amit S. Kalgutkar; Michelle K. Klenotic; Michael T. Leininger; André Lowe; Robert John Maguire; Victoria M. Masterson; Zhuang Miao; Emi Mukaiyama; Jigna D. Patel; John C. Pettersen; Cathy Préville; Brian Samas; Li She; Zhanna Sobol; Claire M. Steppan; Benjamin D. Stevens; Benjamin A. Thuma; Meera Tugnait; Dongxiang Zeng; Tong Zhu

Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It is currently in phase 2 clinical trials and is being evaluated for the treatment of type 2 diabetes.


Drug Metabolism and Disposition | 2008

In silico modeling of nonspecific binding to human liver microsomes.

Hua Gao; Lili Yao; Heather W. Mathieu; Ying Zhang; Tristan S. Maurer; Matthew D. Troutman; Dennis O. Scott; Roger Benjamin Ruggeri; Jing Lin

Estimation of unbound fraction of substrate in microsomal incubation media is important in accurately predicting hepatic intrinsic clearance and drug-drug interactions. In this study, the unbound fraction of 1223 drug-like molecules in human liver microsomal incubation media has been determined using equilibrium dialysis. These compounds, which include 27 marketed drug molecules, cover a much broader range of physiochemical properties such as hydrophobicity, molecular weight, ionization state, and degree of binding than those examined in previous work. In developing the in silico model, we have used two-dimensional molecular descriptors including cLogP, Kier connectivity, shape, and E-state indices, a subset of MOE descriptors, and a set of absorption, disposition, metabolism, and excretion structural keys used for our in-house absorption, disposition, metabolism, excretion, and toxicity modeling. Hydrophobicity is the most important molecular property contributing to the nonspecific binding of substrate to microsomes. The prediction accuracy of the model is validated using a subset of 100 compounds, and 92% of the variance is accounted for by the model with a root mean square error (RMSE) of 0.10. For the training set of compounds, 99% of variance is accounted for by the model with a RMSE of 0.02. The performance of the developed model has been further tested using the 27 marketed drug molecules with a RMSE of 0.10 between the observed and the predicted unbound fraction values.


Drug Metabolism and Disposition | 2007

Genotoxicity of 2-(3-Chlorobenzyloxy)-6-(piperazinyl)pyrazine, a Novel 5-Hydroxytryptamine2c Receptor Agonist for the Treatment of Obesity: Role of Metabolic Activation

Amit S. Kalgutkar; Deepak Dalvie; Evan Smith; Stephanie L. Coffing; Jennifer R. Cheung; Chandra Vage; Mary E. Lame; Phoebe Chiang; Kim F. McClure; Tristan S. Maurer; Richard V. Coelho; Victor F. Soliman; Klaas Schildknegt

2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT2C agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and TA1537. The increase in reverse mutations was attenuated upon coincubation with methoxylamine and glutathione. The irreversible and concentration-dependent incorporation of radioactivity in calf thymus DNA after incubations with [14C]3 in the presence of rat S9/NADPH suggested that 3 was bioactivated to a reactive intermediate that covalently bound DNA. In vitro metabolism studies on 3 with rat S9/NADPH in the presence of methoxylamine and cyanide led to the detection of amine and cyano conjugates of 3. The mass spectrum of the amine conjugate was consistent with condensation of amine with an aldehyde metabolite derived from hydroxylation of the secondary piperazine nitrogen-α-carbon bond. The mass spectrum of the cyano conjugate suggested a bioactivation pathway involving N-hydroxylation of the secondary piperazine nitrogen followed by two-electron oxidation to generate an electrophilic nitrone, which reacted with cyanide. The 3-chlorobenzyl motif in 3 was also bioactivated via initial aromatic ring hydroxylation followed by elimination to a quinone-methide species that reacted with glutathione or with the secondary piperazine ring nitrogen in 3 and its monohydroxylated metabolite(s). The metabolism studies described herein provide a mechanistic basis for the mutagenicity of 3.


Journal of Medicinal Chemistry | 2015

Volume of Distribution in Drug Design.

Dennis A. Smith; Kevin Beaumont; Tristan S. Maurer; Li Di

Volume of distribution is one of the most important pharmacokinetic properties of a drug candidate. It is a major determinant of half-life and dosing frequency of a drug. For a similar log P, a basic molecule will tend to exhibit higher volume of distribution than a neutral molecule. Acids often exhibit low volumes of distribution. Although a design strategy against volume of distribution can be advantageous in achieving desirable dosing regimen, it must be well-directed in order to avoid detrimental effects to other important properties. Strategies to increase volume of distribution include adding lipophilicity and introducing basic functional groups in a way that does not increase metabolic clearance.


Aaps Pharmsci | 2000

Comparison of methods for analyzing kinetic data from mechanism-based enzyme inactivation: Application to nitric oxide synthase

Tristan S. Maurer; Ho-Leung Fung

The goals of this study were (1) to investigate the performance of 2 classical methods of kinetic analysis when applied to data from enzyme systems in which mechanism-based inactivation and enzyme degradation are present, and (2) to develop and validate a nonlinear method of kinetic data analysis that may perform better under these situations. A composite equation was derived to link various parameters that govern the kinetics of mechanism-based inactivation, viz., enzyme activity, inhibitor-binding affinity (K1), inactivation rate (Kinact), and enzyme degradation (kdeg). The relative accuracy and precision of parameter estimation by the Dixon and Kitz-Wilson methods and a new nonlinear method were evaluated by computer simulation. The behavior of these methods of analysis were validated experimentally, using the nitric oxide synthase enzyme, both in purified form and as expressed in murine macrophage cell cultures. We showed that the Dixon method, as expected, could not provide accurate estimates of K1 in the presence of either enzyme inactivation or instability. The Kitz-Wilson method could provide accurate estimates of these parameters; however, the precisions of these estimates were poorer than those obtained using the nonlinear method of analysis. We conclude that the nonlinear approach is superior to classical methods of data analysis for enzyme inhibitor kinetics, based on better efficiency, accuracy, and precision.


Journal of Medicinal Chemistry | 2015

Discovery of 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999): A Highly Selective Mechanism-Based Myeloperoxidase Inhibitor for the Treatment of Cardiovascular Diseases.

Roger Benjamin Ruggeri; Leonard Buckbinder; Scott W. Bagley; Philip A. Carpino; Edward L. Conn; Matthew S. Dowling; Dilinie P. Fernando; Wenhua Jiao; Daniel W. Kung; Suvi T. M. Orr; Yingmei Qi; Benjamin N. Rocke; Aaron Smith; Joseph Scott Warmus; Yan Zhang; Daniel Bowles; Daniel W. Widlicka; Heather Eng; Tim Ryder; Raman Sharma; Angela Wolford; Carlin Okerberg; Karen Walters; Tristan S. Maurer; Yanwei Zhang; Paul D. Bonin; Samantha N. Spath; Gang Xing; David Hepworth; Kay Ahn

Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinsons diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies.


ACS Medicinal Chemistry Letters | 2010

Metabolism-guided design of short-acting calcium-sensing receptor antagonists.

James A. Southers; Jonathan N. Bauman; David A. Price; Paul S. Humphries; Gayatri Balan; John F. Sagal; Tristan S. Maurer; Yan Zhang; Robert M. Oliver; Michael Herr; David R. Healy; Mei Li; Brendon Kapinos; Gwendolyn Fate; Keith Riccardi; Vishwas M. Paralkar; Thomas A. Brown; Amit S. Kalgutkar

As part of a strategy to deliver short-acting calcium-sensing receptor (CaSR) antagonists, the metabolically labile thiomethyl functionality was incorporated into the zwitterionic amino alcohol derivative 3 with the hope of increasing human clearance through oxidative metabolism, while delivering a pharmacologically inactive sulfoxide metabolite. The effort led to the identification of thioanisoles 22 and 23 as potent and orally active CaSR antagonists with a rapid onset of action and short pharmacokinetic half-lives, which led to a rapid and transient stimulation of parathyroid hormone in a dose-dependent fashion following oral administration to rats. On the basis of the balance between target pharmacology, safety, and human disposition profiles, 22 and 23 were advanced as clinical candidates for the treatment of osteoporosis.

Collaboration


Dive into the Tristan S. Maurer's collaboration.

Top Co-Authors

Avatar

Ho-Leung Fung

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

J. Cory Kalvass

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge