Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trygve Brautaset is active.

Publication


Featured researches published by Trygve Brautaset.


Chemistry & Biology | 2000

Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway

Trygve Brautaset; Olga N. Sekurova; Håvard Sletta; Trond E. Ellingsen; Arne R. Strøm; Svein Valla; Sergey B. Zotchev

BACKGROUND The polyene macrolide antibiotic nystatin produced by Streptomyces noursei ATCC 11455 is an important antifungal agent. The nystatin molecule contains a polyketide moiety represented by a 38-membered macrolactone ring to which the deoxysugar mycosamine is attached. Molecular cloning and characterization of the genes governing the nystatin biosynthesis is of considerable interest because this information can be used for the generation of new antifungal antibiotics. RESULTS A DNA region of 123,580 base pairs from the S. noursei ATCC 11455 genome was isolated, sequenced and shown by gene disruption to be involved in nystatin biosynthesis. Analysis of the DNA sequence resulted in identification of six genes encoding a modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport and regulatory proteins. One of the PKS-encoding genes, nysC, was found to encode the largest (11,096 amino acids long) modular PKS described to date. Analysis of the deduced gene products allowed us to propose a model for the nystatin biosynthetic pathway in S. noursei. CONCLUSIONS A complete set of genes responsible for the biosynthesis of the antifungal polyene antibiotic nystatin in S. noursei ATCC 11455 has been cloned and analyzed. This represents the first example of the complete DNA sequence analysis of a polyene antibiotic biosynthetic gene cluster. Manipulation of the genes identified within the cluster may potentially lead to the generation of novel polyketides and yield improvements in the production strains.


Journal of Bacteriology | 2004

In Vivo Analysis of the Regulatory Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455 Reveals Their Differential Control Over Antibiotic Biosynthesis

Olga N. Sekurova; Trygve Brautaset; Håvard Sletta; Sven E. F. Borgos; Øyvind M. Jakobsen; Trond Erling Ellingsen; Arne R. Strøm; Svein Valla; Sergey B. Zotchev

Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targets for the NysR regulators, chromosomal integration vectors with the xylE reporter gene under the control of seven putative promoter regions upstream of the nystatin structural and regulatory genes were constructed. Expression analyses of the resulting vectors in the S. noursei wild-type strain and regulatory mutants revealed that the four regulators differentially affect certain promoters. According to these analyses, genes responsible for initiation of nystatin biosynthesis and antibiotic transport were the major targets for regulation. Data from cross-complementation experiments showed that nysR genes could in some cases substitute for each other, suggesting a functional hierarchy of the regulators and implying a cascade-like mechanism of regulation of nystatin biosynthesis.


Applied and Environmental Microbiology | 2007

The Presence of N-Terminal Secretion Signal Sequences Leads to Strong Stimulation of the Total Expression Levels of Three Tested Medically Important Proteins during High-Cell-Density Cultivations of Escherichia coli

Håvard Sletta; Anne Tøndervik; Sigrid Hakvåg; T. E. Vee Aune; Aina Nedal; R. Aune; G. Evensen; Svein Valla; Trond E. Ellingsen; Trygve Brautaset

ABSTRACT Genetic optimizations to achieve high-level production of three different proteins of medical importance for humans, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon alpha 2b (IFN-α2b), and single-chain antibody variable fragment (scFv-phOx), were investigated during high-cell-density cultivations of Escherichia coli. All three proteins were poorly expressed when put under control of the strong Pm/xylS promoter/regulator system, but high volumetric yields of GM-CSF and scFv-phOx (up to 1.7 and 2.3 g/liter, respectively) were achieved when the respective genes were fused to a translocation signal sequence. The choice of signal sequence, pelB, ompA, or synthetic signal sequence CSP, displayed a high and specific impact on the total expression levels for these two proteins. Data obtained by quantitative PCR confirmed relatively high in vivo transcript levels without using a fused signal sequence, suggesting that the signal sequences mainly stimulate translation. IFN-α2b expression remained poor even when fused to a signal sequence, and an alternative IFN-α2b coding sequence that was optimized for effective expression in Escherichia coli was therefore synthesized. The total expression level of this optimized gene remained low, while high-level production (0.6 g/liter) was achieved when the gene was fused to a signal sequence. Together, our results demonstrate a critical role of signal sequences for achieving industrial level expression of three human proteins in E. coli under the conditions tested, and this effect has to our knowledge not previously been systematically investigated.


Applied and Environmental Microbiology | 2004

Broad-Host-Range Plasmid pJB658 Can Be Used for Industrial-Level Production of a Secreted Host-Toxic Single-Chain Antibody Fragment in Escherichia coli

Håvard Sletta; Aina Nedal; Trond Erik Vee Aune; H. Hellebust; Sigrid Hakvåg; R. Aune; Trond E. Ellingsen; Svein Valla; Trygve Brautaset

ABSTRACT In industrial scale recombinant protein production it is often of interest to be able to translocate the product to reduce downstream costs, and heterologous proteins may require the oxidative environment outside of the cytoplasm for correct folding. High-level expression combined with translocation to the periplasm is often toxic to the host, and expression systems that can be used to fine-tune the production levels are therefore important. We previously constructed vector pJB658, which harbors the broad-host-range RK2 minireplicon and the inducible Pm/xylS promoter system, and we here explore the potential of this unique system to manipulate the expression and translocation of a host-toxic single-chain antibody variable fragment with affinity for hapten 2-phenyloxazol-5-one (phOx) (scFv-phOx). Fine-tuning of scFv-phOx levels was achieved by varying the concentrations of inducers and the vector copy number and also different signal sequences. Our data show that periplasmic accumulation of scFv-phOx leads to cell lysis, and we demonstrate the importance of controlled and high expression rates to achieve high product yields. By optimizing such parameters we show that soluble scFv-phOx could be produced to a high volumetric yield (1.2 g/liter) in high-cell-density cultures of Escherichia coli.


Journal of Bacteriology | 2006

Upregulated Transcription of Plasmid and Chromosomal Ribulose Monophosphate Pathway Genes Is Critical for Methanol Assimilation Rate and Methanol Tolerance in the Methylotrophic Bacterium Bacillus methanolicus

Øyvind M. Jakobsen; Aline Benichou; Michael C. Flickinger; Svein Valla; Trond E. Ellingsen; Trygve Brautaset

The natural plasmid pBM19 carries the key mdh gene needed for the oxidation of methanol into formaldehyde by Bacillus methanolicus. Five more genes, glpX, fba, tkt, pfk, and rpe, with deduced roles in the cell primary metabolism, are also located on this plasmid. By using real-time PCR, we show that they are transcriptionally upregulated (6- to 40-fold) in cells utilizing methanol; a similar induction was shown for two chromosomal genes, hps and phi. These seven genes are involved in the fructose bisphosphate aldolase/sedoheptulose bisphosphatase variant of the ribulose monophosphate (RuMP) pathway for formaldehyde assimilation. Curing of pBM19 causes higher methanol tolerance and reduced formaldehyde tolerance, and the methanol tolerance is reversed to wild-type levels by reintroducing mdh. Thus, the RuMP pathway is needed to detoxify the formaldehyde produced by the methanol dehydrogenase-mediated conversion of methanol, and the in vivo transcription levels of mdh and the RuMP pathway genes reflect the methanol tolerance level of the cells. The transcriptional inducer of hps and phi genes is formaldehyde, and not methanol, and introduction of multiple copies of these two genes into B. methanolicus made the cells more tolerant of growth on high methanol concentrations. The recombinant strain also had a significantly higher specific growth rate on methanol than the wild type. While pBM19 is critical for growth on methanol and important for formaldehyde detoxification, the maintenance of this plasmid represents a burden for B. methanolicus when growing on mannitol. Our data contribute to a new and fundamental understanding of the regulation of B. methanolicus methylotrophy.


Microbial Biotechnology | 2009

Positively regulated bacterial expression systems

Trygve Brautaset; Rahmi Lale; Svein Valla

Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.


Microbial Cell Factories | 2013

A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli.

Simone Balzer; Veronika Kucharova; Judith A. Megerle; Rahmi Lale; Trygve Brautaset; Svein Valla

BackgroundProduction of recombinant proteins in bacteria for academic and commercial purposes is a well established field; however the outcomes of process developments for specific proteins are still often unpredictable. One reason is the limited understanding of the performance of expression cassettes relative to each other due to different genetic contexts. Here we report the results of a systematic study aiming at exclusively comparing commonly used regulator/promoter systems by standardizing the designs of the replicon backbones.ResultsThe vectors used in this study are based on either the RK2- or the pMB1- origin of replication and contain the regulator/promoter regions of XylS/Pm (wild-type), XylS/Pm ML1-17 (a Pm variant), LacI/PT7lac, LacI/Ptrc and AraC/PBAD to control expression of different proteins with various origins. Generally and not unexpected high expression levels correlate with high replicon copy number and the LacI/PT7lac system generates more transcript than all the four other cassettes. However, this transcriptional feature does not always lead to a correspondingly more efficient protein production, particularly if protein functionality is considered. In most cases the XylS/Pm ML1-17 and LacI/PT7lac systems gave rise to the highest amounts of functional protein production, and the XylS/Pm ML1-17 is the most flexible in the sense that it does not require any specific features of the host. The AraC/PBAD system is very good with respect to tightness, and a commonly used bioinformatics prediction tool (RBS calculator) suggested that it has the most translation-efficient UTR. Expression was also studied by flow cytometry in individual cells, and the results indicate that cell to cell heterogeneity is very relevant for understanding protein production at the population level.ConclusionsThe choice of expression system needs to be evaluated for each specific case, but we believe that the standardized vectors developed for this study can be used to more easily identify the nature of case-specific bottlenecks. By then taking into account the relevant characteristics of each expression cassette it will be easier to make the best choice with respect to the goal of achieving high levels of protein expression in functional or non-functional form.


Applied and Environmental Microbiology | 2012

Genome Sequence of Thermotolerant Bacillus methanolicus: Features and Regulation Related to Methylotrophy and Production of l-Lysine and l-Glutamate from Methanol

Tonje Marita Bjerkan Heggeset; Anne Krog; Simone Balzer; Alexander Wentzel; Trond E. Ellingsen; Trygve Brautaset

ABSTRACT Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into l-lysine and l-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their l-glutamate production levels (406 mmol liter−1 and 11 mmol liter−1, respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for l-lysine and l-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol.


Chemistry & Biology | 2008

Improved Antifungal Polyene Macrolides via Engineering of the Nystatin Biosynthetic Genes in Streptomyces noursei

Trygve Brautaset; Håvard Sletta; Aina Nedal; Sven E. F. Borgos; Kristin F. Degnes; Ingrid Bakke; Olga Volokhan; Olga N. Sekurova; Ivan D. Treshalin; Elena P. Mirchink; Alexander Dikiy; Trond E. Ellingsen; Sergey B. Zotchev

Seven polyene macrolides with alterations in the polyol region and exocyclic carboxy group were obtained via genetic engineering of the nystatin biosynthesis genes in Streptomyces noursei. In vitro analyses of the compounds for antifungal and hemolytic activities indicated that combinations of several mutations caused additive improvements in their activity-toxicity properties. The two best analogs selected on the basis of in vitro data were tested for acute toxicity and antifungal activity in a mouse model. Both analogs were shown to be effective against disseminated candidosis, while being considerably less toxic than amphotericin B. To our knowledge, this is the first report on polyene macrolides with improved in vivo pharmacological properties obtained by genetic engineering. These results indicate that the engineered nystatin analogs can be further developed into antifungal drugs for human use.


Applied Microbiology and Biotechnology | 2014

Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids

Sabine A. E. Heider; Petra Peters-Wendisch; Volker F. Wendisch; Jules Beekwilder; Trygve Brautaset

Carotenoids, a subfamily of terpenoids, are yellow- to red-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxygen. Due to their color and their potential beneficial effects on human health, carotenoids receive increasing attention. Carotenoids can be classified due to the length of their carbon backbone. Most carotenoids have a C40 backbone, but also C30 and C50 carotenoids are known. All carotenoids are derived from isopentenyl pyrophosphate (IPP) as a common precursor. Pathways leading to IPP as well as metabolic engineering of IPP synthesis and C40 carotenoid production have been reviewed expertly elsewhere. Since C50 carotenoids are synthesized from the C40 carotenoid lycopene, we will summarize common strategies for optimizing lycopene production and we will focus our review on the characteristics, biosynthesis, glycosylation, and overproduction of C50 carotenoids.

Collaboration


Dive into the Trygve Brautaset's collaboration.

Top Co-Authors

Avatar

Svein Valla

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trond Erling Ellingsen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sergey B. Zotchev

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Olga N. Sekurova

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Arne R. Strøm

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge