Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tse-Ming Hong is active.

Publication


Featured researches published by Tse-Ming Hong.


Nature Cell Biology | 2009

p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug

Shu Ping Wang; Wen Lung Wang; Yih-Leong Chang; Chen-Tu Wu; Yu Chih Chao; Shih Han Kao; Ang Yuan; Chung-Wu Lin; Shuenn Chen Yang; Wing Kai Chan; Ker-Chau Li; Tse-Ming Hong; Pan-Chyr Yang

The tumour suppressor p53 is known to prevent cancer progression by inhibiting proliferation and inducing apoptosis of tumour cells. Slug, an invasion promoter, exerts its effects by repressing E-cadherin transcription. Here we show that wild-type p53 (wtp53) suppresses cancer invasion by inducing Slug degradation, whereas mutant p53 may stabilize Slug protein. In non-small-cell lung cancer (NSCLC), mutation of p53 correlates with low MDM2, high Slug and low E-cadherin expression. This expression profile is associated with poor overall survival and short metastasis-free survival in patients with NSCLC. wtp53 upregulates MDM2 and forms a wtp53–MDM2–Slug complex that facilitates MDM2-mediated Slug degradation. Downregulation of Slug by wtp53 or MDM2 enhances E-cadherin expression and represses cancer cell invasiveness. In contrast, mutant p53 inactivates Slug degradation and leads to Slug accumulation and increased cancer cell invasiveness. Our findings indicate that wtp53 and p53 mutants may differentially control cancer invasion and metastasis through the p53–MDM2–Slug pathway.


Oncogene | 2008

Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells

S. H. Hsieh; N. W. Ying; Ming Heng Wu; Wei-Fan Chiang; C. L. Hsu; Tung Yiu Wong; Ying-Tai Jin; Tse-Ming Hong; Yuh Ling Chen

Galectin-1 (Gal-1), a homodimeric prototype of the galectins with a single carbohydrate-recognition domain, was recently identified as being overexpressed in tumor-associated capillary endothelial cells. The role of Gal-1 in endothelial cellular functions and the mechanism of action of Gal-1 remain unknown. Neuropilin-1 (NRP1) is a neuronal receptor that mediates repulsive growth cone guidance, and NRP1 functions in endothelial cells as a coreceptor (with vascular endothelial growth factor receptors (VEGFRs)) for VEGF165. In this study, we found that Gal-1 was overexpressed in the tumor-associated endothelial cells of oral squamous cell carcinomas (P<0.001). Gal-1 increased the proliferation and adhesion of endothelial cells, and enhanced cell migration in combination with VEGF165. Surprisingly, Gal-1 selectively bound NRP1 via the carbohydrate-recognition domain, but did not bind VEGFR-1, VEGFR-2 or VEGFR-3. The Gal-1–NRP1 interaction mediated the migration and adhesion of endothelial cells. The binding of Gal-1 to NRP1 enhanced VEGFR-2 phosphorylation and stimulated the activation of the mitogen activated protein (MAP) kinases SAPK1/JNK (stress activated protein kinase-1/c-Jun NH2-terminal kinase). These findings show, for the first time, that Gal-1 can directly bind to NRP1 on endothelial cells, and can promote the NRP1/VEGFR-2-mediated signaling pathway as well as NRP1-mediated biological activities.


Nature Communications | 2013

MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1

Ching Wen Lin; Yih-Leong Chang; Yu Chiuan Chang; Jau Chen Lin; Chun Chi Chen; Szu Hua Pan; Chen-Tu Wu; Hsuan Yu Chen; Shuenn Chen Yang; Tse-Ming Hong; Pan-Chyr Yang

Dysregulation of microRNAs has a critical role in cancer progression. Here we identify an intronic microRNA, miR-135b that is upregulated in highly invasive non-small-cell lung cancer cells. Expression of miR-135b enhances cancer cell invasive and migratory abilities in vitro and promotes cancer metastasis in vivo, while specific inhibition of miR-135b by a miR-135b-specific molecular sponge and antagomirs suppresses cancer cell invasion, orthotopic lung tumour growth and metastasis in a mouse model. miR-135b targets multiple key components in the Hippo pathway, including LATS2, β-TrCP and NDR2, as well as LZTS1. Expression of miR-135b, LZTS1, LATS2 and nuclear TAZ predicts poor outcomes of non-small-cell lung cancer. We find that miR-135b is dually regulated by DNA demethylation and nuclear factor-kappaB signalling, implying that abnormal expression of miR-135b in cancer may result from inflammatory and epigenetic modulations. We conclude that miR-135b is an oncogenic microRNA and a potential therapeutic target for non-small-cell lung cancer.


Clinical Cancer Research | 2007

Targeting Neuropilin 1 as an Antitumor Strategy in Lung Cancer

Tse-Ming Hong; Yuh Ling Chen; Yi Ying Wu; Ang Yuan; Yu Chih Chao; Yi Chuan Chung; Ming Heng Wu; Shuenn Chen Yang; Szu Hua Pan; Jin-Yuan Shih; Wing Kai Chan; Pan-Chyr Yang

Purpose: Neuropilin 1 (NRP1) is a mediator of lung branching and angiogenesis in embryonic development and angiogenesis in cancer. The role of NRP1 in cancer progression is not fully elucidated. We investigated the role of NRP1 in cancer invasion and tumor angiogenesis, its signaling pathways, prognostic significance, and therapeutic implications. Experimental Design: Sixty patients with non–small cell lung cancer (NSCLC) were studied. NRP1 mRNA expression was measured using real-time quantitative reverse-transcription PCR. NRP1 and cancer cell invasion, angiogenesis, and signaling pathways were studied using NRP1 stimulation by vascular endothelial growth factor 165 (VEGF165) and NRP1 inhibition by small interfering RNAs (siRNA), soluble NRP1 (sNRP1), and NRP1-inhibition peptides. The NRP1-inhibition peptides were identified using a phage display peptide library. Results: NSCLC patients with high expression of NRP1 had shorter disease-free (P = 0.0162) and overall survival (P = 0.0164; log-rank test). Multivariate analyses showed NRP1 is an independent prognostic factor in overall (HR, 2.37, 95% CI = 1.15 to 4.9, P = 0.0196) and disease-free survival [hazard ratio (HR), 2.38; 95% confidence interval (95% CI), 1.15-4.91; P = 0.0195] of NSCLC patients. Knockdown of NRP1 suppressed cancer cell migration, invasion, filopodia formation, tumorigenesis, angiogenesis, and in vivo metastasis. NRP1 signaling pathways involved VEGF receptor 2 and phosphoinositide-3-kinase (PI3K) and Akt activation. Two potent synthetic anti-NRP1 peptides, DG1 and DG2, which block NRP1 signaling pathways and suppress tumorigenesis, cancer invasion, and angiogenesis, were identified. Conclusions: NRP1 is a cancer invasion and angiogenesis enhancer. NRP1 expression is an independent predictor of cancer relapse and poor survival in NSCLC patients. NRP1 plays a critical role in tumorigenesis, cancer invasion, and angiogenesis through VEGF, PI3K, and Akt pathways. NRP1 may have potential as a new therapeutic target in NSCLC.


Molecular Cancer Research | 2009

Galectin-1-Mediated Tumor Invasion and Metastasis, Up-Regulated Matrix Metalloproteinase Expression, and Reorganized Actin Cytoskeletons

Ming Heng Wu; Tse-Ming Hong; Hui Wen Cheng; Szu Hua Pan; Yu Ray Liang; Hsiao Chin Hong; Wei-Fan Chiang; Tung Yiu Wong; Dar-Bin Shieh; Ai-Li Shiau; Ying Tai Jin; Yuh Ling Chen

Galectin-1 (Gal-1) is a β-galactose-binding lectin; its expression level has been reported to correlate with tumor progression. Gal-1 is highly expressed in the invasive front of primary tumors and in the cancer cells of metastatic lesions in the lymph nodes of patients with oral squamous cell carcinoma. However, the molecular mechanism of Gal-1 in tumor metastasis is not completely clear. We found that increased Gal-1 expression is closely associated with its high levels of invasion in lung adenocarcinoma and oral squamous cell carcinoma cell lines. Knocking down Gal-1 with small interfering RNA in highly invasive cancer cells reduced their invasion levels. Moreover, the invasion ability of poorly invasive cancer cells was significantly increased after Gal-1 overexpression of Gal-1. Mechanism studies revealed that Gal-1 promoted tumor invasion mainly by up-regulating matrix metalloproteinase (MMP)-9 and MMP-2 and by reorganizing actin cytoskeleton. Gal-1 enhanced the activation of Cdc42, a small GTPase and member of the Rho family, thus increasing the number and length of filopodia on tumor cells. Furthermore, Gal-1-overexpressing cells had higher metastatic abilities in tail vein metastasis assays in vivo. We conclude that Gal-1 is involved in tumor invasion and metastasis by increasing MMP expression and reorganizing cytoskeletons in oral cancers and lung adenocarcinoma. (Mol Cancer Res 2009;7(3):311–8)


American Journal of Respiratory and Critical Care Medicine | 2009

Claudin-1 Is a Metastasis Suppressor and Correlates with Clinical Outcome in Lung Adenocarcinoma

Yu Chih Chao; Szu Hua Pan; Shuenn Chen Yang; Sung-Liang Yu; Ting Fang Che; Chung-Wu Lin; Mu Shiun Tsai; Gee Chen Chang; Che Hsiang Wu; Yi Ying Wu; Yung Chie Lee; Tse-Ming Hong; Pan-Chyr Yang

RATIONALE Claudin (CLDN)-1, a key component of tight junction complexes, was down-regulated in human lung adenocarcinomas. OBJECTIVES To investigate the clinical significance of CLDN1 expression in patients with lung adenocarcinoma and its role in cancer invasion and metastasis. METHODS We examined the CLDN1 mRNA expression in tumor specimens from 64 patients with lung adenocarcinoma and protein expression by immunohistochemistry in an independent cohort of 67 patients with lung adenocarcinoma. CLDN1 functions in cancer cell migration, invasion, and metastatic colonization were studied by overexpression and knockdown of CLDN1. Affymetrix microarrays were performed to identify gene expression changes associated with CLDN1 overexpression. MEASUREMENTS AND MAIN RESULTS We found that low-CLDN1 mRNA expression had shorter overall survival (P = 0.027, log-rank test) in 64 patients with lung adenocarcinoma, and we confirmed by immunohistochemistry that low CLDN1 expression had shorter overall survival (P = 0.024, log-rank test) in an independent cohort of 67 patients with lung adenocarcinoma. Overexpression of CLDN1 inhibited cancer cell dissociation in time-lapse imaging of wound healing, and suppressed cancer cell migration, invasion, and metastasis. Knockdown CLDN1 expression increased cancer cell invasive and metastatic abilities. Affymetrix microarrays identified a panel of genes altered by CLDN1 overexpression. CLDN1 increased expressions of cancer invasion/metastasis suppressors (e.g., connective tissue growth factor [CTGF], thrombospondin 1 [THBS1], deleted in liver cancer 1 [DLC1], occludin [OCLN], zona occludens 1 [ZO-1]) and suppressed expressions of invasion/metastasis enhancers (e.g., secreted phosphoprotein 1 [SPP1], cut-like homeobox 1 [CUTL1], transforming growth factor alpha [TGF-alpha], solute carrier family 2 [faciliated glucose transporter] member 3 [SLC2A3], placental growth factor [PGF]), supporting a role for CLDN1 as an invasion and metastasis suppressor. CONCLUSIONS CLDN1 is a cancer invasion/metastasis suppressor. CLDN1 is also a useful prognostic predictor and potential drug treatment target for patients with lung adenocarcinoma.


Clinical Cancer Research | 2011

Targeting Galectin-1 in Carcinoma-Associated Fibroblasts Inhibits Oral Squamous Cell Carcinoma Metastasis by Downregulating MCP-1/CCL2 Expression

Ming Heng Wu; Hsiao Chin Hong; Tse-Ming Hong; Wei-Fan Chiang; Ying Tai Jin; Yuh Ling Chen

Purpose: Carcinoma-associated fibroblasts (CAFs) in tumor stroma play an important role in tumor progression and have been associated with a poor prognosis in oral squamous cell carcinoma (OSCC). However, how CAFs influence OSCC malignancy and whether normalizing CAFs inhibits cancer progression remain unclear. Experimental Design: The relationship between the expression of Galectin-1 (Gal-1) and alpha-smooth muscle actin (α-SMA, a CAF marker) in OSCC patient samples and primary cultured CAFs was examined by quantitative real-time PCR, Western blotting, and immunofluorescence. To examine the effect of Gal-1 on CAF activation and CAF-mediated tumor invasion and migration in vitro, Gal-1 expression was knocked down by small hairpin RNA. Finally, cancer cells and CAFs were coimplanted into SCID mice to evaluate the effect of Gal-1 on CAF-modulated tumor progression in vivo. Results: Gal-1 expression is positively associated with α-SMA in the stroma of OSCC specimens. Gal-1 knockdown decreases activated CAF characteristics, resulting in a decrease in α-SMA expression and extracellular matrix protein production. Notably, blocking Gal-1 expression significantly inhibits CAF-conditioned medium-induced tumor cell migration and invasion, possibly by reducing the production of monocyte chemotactic protein-1 (MCP-1/CCL2). MCP-1 induces the migration of OSCC cells by binding to the receptor CCR2; adding an MCP-1 antibody to CAF-conditioned medium that inhibits the interaction between MCP-1 and CCR2 abolishes migration. Finally, we found that Gal-1 knockdown in CAFs significantly reduces CAF-augmented tumor growth and metastasis in vivo. Conclusions: Our findings demonstrate that Gal-1 regulates CAF activation and indicate that targeting Gal-1 in CAFs inhibits OSCC metastasis by modulating MCP-1 expression. Clin Cancer Res; 17(6); 1306–16. ©2011 AACR.


Oncogene | 2005

The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion

Chi Chung Wang; Meng Feng Tsai; Tse-Ming Hong; Gee Chen Chang; Chih Yi Chen; Wen-Ming Yang; Jeremy J.W. Chen; Pan-Chyr Yang

By using microarray and an invasion/metastasis lung cell line model, we identified the DnaJ-like heat shock protein 40, HLJ1, and found that the expression of HLJ1 correlates negatively with cancer cell invasion ability. Overexpression of HLJ1 can suppress cancer cell invasion in vitro. We further characterize the putative promoter region and investigate the transcriptional regulations of human HLJ1. A serial deletion of the 1.2 kb at the 5′-flanking region of the human HLJ1 gene was subcloned into a vector containing reporter gene and transfected into human lung adenocarcinoma cell line CL1-0, followed by luciferase activity assay. The results indicated that the region from –232 to +176 could drive the basal transcriptional activity of the HLJ1 gene. Sequence analysis of the HLJ1 gene promoter region showed absence of a TATA box, but identified an inverted CCAAT box and four YY1 transcriptional factor-binding sites, which may be important in the regulation of HLJ1 expression. Co-transfection of the YY1 and HLJ1 basal promoter regions, site-directed mutagenesis, and electrophoretic mobility shift assay confirmed that YY1 could upregulate HLJ1 basal promoter activity. Furthermore, we also demonstrated that overexpression of YY1 in CL1-0 cells can increase HLJ1 expression and reduce cell invasive capability. The reduction of cancer cell invasive ability is, at least in part, through upregulation of E-cadherin expression. The increase in HLJ1 and E-cadherin expression, as well as the suppression of invasion ability, can be reversed specifically by HLJ1 siRNA.


Angiogenesis | 2014

miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1

Yi-Ying Wu; Yuh Ling Chen; Yun-Chia Jao; I-Shan Hsieh; Kung Chao Chang; Tse-Ming Hong

Tumor angiogenesis is a critical process during cancer progression that modulates tumor growth and metastasis. Here, we identified an anti-angiogenic microRNA, miR-320, which is decreased in oral squamous cell carcinoma (OSCC) cell lines and tumor tissues from OSCC patients, down-regulated in blood vessels and inversely correlated with vascularity in OSCC tissues. Neuropilin 1 (NRP1), an important regulator of angiogenesis, was found to be a target of miR-320. The 3′-untranslated region of NRP1 mRNA contains multiple miR-320 binding sites, and its expression was regulated by miR-320. By administering either miR-320 precursor or antagonist, we found that miR-320 suppressed the migration, adhesion and tube formation of vascular endothelial cells. Knockdown of NRP1 abolished antagomiR-320-induced cell migration. Additionally, miR-320 expression was regulated by hypoxia in growth factor-deficient conditions by the hypoxia-inducible factor 1-alpha. Furthermore, lentivirus carrying the miR-320 precursor suppressed the tumorigenicity of OSCC cells and tumor angiogenesis in vivo. Taken together, these data show that miR-320 regulates the function of vascular endothelial cells by targeting NRP1 and has the potential to be developed as an anti-angiogenic or anti-cancer drug.


Oncogene | 2014

GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug

Shih-Han Kao; Wen-Lung Wang; Chi-Yuan Chen; Yih-Leong Chang; Yi-Ying Wu; Yi-Ting Wang; Shu-Ping Wang; Alexey I. Nesvizhskii; Yu-Ju Chen; Tse-Ming Hong; Pan-Chyr Yang

Glycogen synthase kinase 3 beta (GSK3β) is highly inactivated in epithelial cancers and is known to inhibit tumor migration and invasion. The zinc-finger-containing transcriptional repressor, Slug, represses E-cadherin transcription and enhances epithelial–mesenchymal transition (EMT). In this study, we find that the GSK3β-pSer9 level is associated with the expression of Slug in non-small cell lung cancer. GSK3β-mediated phosphorylation of Slug facilitates Slug protein turnover. Proteomic analysis reveals that the carboxyl terminus of Hsc70-interacting protein (CHIP) interacts with wild-type Slug (wtSlug). Knockdown of CHIP stabilizes the wtSlug protein and reduces Slug ubiquitylation and degradation. In contrast, nonphosphorylatable Slug-4SA is not degraded by CHIP. The accumulation of nondegradable Slug may further lead to the repression of E-cadherin expression and promote cancer cell migration, invasion and metastasis. Our findings provide evidence of a de novo GSK3β-CHIP-Slug pathway that may be involved in the progression of metastasis in lung cancer.

Collaboration


Dive into the Tse-Ming Hong's collaboration.

Top Co-Authors

Avatar

Pan-Chyr Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuh Ling Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yih-Leong Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jeremy J.W. Chen

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Szu Hua Pan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chen-Tu Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konan Peck

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jin-Yuan Shih

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge