Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsing-Fen Ho is active.

Publication


Featured researches published by Tsing-Fen Ho.


Journal of Bioscience and Bioengineering | 2011

Development of natural anti-tumor drugs by microorganisms

Chia-Che Chang; Wei-Chuan Chen; Tsing-Fen Ho; Ho-Shing Wu; Yu-Hong Wei

Discoveries of tumor-resistant pharmacological drugs have mainly resulted from screening of natural products and their analogs. Some are also discovered incidentally when studying organisms. The great biodiversity of microorganisms raises the possibility of producing secondary metabolites (e.g., mevastatin, lovastatin, epothilone, salinosporamide A) to cope with adverse environments. Recently, natural plant pigments with anti-tumor activities such as β-carotene, lycopene, curcumin and anthocyanins have been proposed. However, many plants have a long life cycle. Therefore, pigments from microorganisms represent another option for the development of novel anti-tumor drugs. Prodigiosin (PG) is a natural red pigment produced by microorganisms, i.e., Serratia marcescens and other gram-negative bacteria. The anti-tumor potential of PG has been widely demonstrated. The families of PG (PGs), which share a common pyrrolylpyrromethene (PPM) skeleton, are produced by various bacteria. PGs are bioactive pigments and are known to exert immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. Currently the most common strain used for producing PGs is S. marcescens. However, few reports have discussed PGs production. This review therefore describes the development of an anti-tumor drug, PG, that can be naturally produced by microorganisms, and evaluates the microbial production system, fermentation strategies, purification and identification processes. The application potential of PGs is also discussed.


Toxicology and Applied Pharmacology | 2009

Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

Tsing-Fen Ho; Yu-Ta Peng; Show-Mei Chuang; Shin-Chang Lin; Bo-Lin Feng; Chien-Hsing Lu; Wan-Ju Yu; Jo Shu Chang; Chia-Che Chang

Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.


Chemical Research in Toxicology | 2015

Tanshinone IIA Facilitates TRAIL Sensitization by Up-regulating DR5 through the ROS-JNK-CHOP Signaling Axis in Human Ovarian Carcinoma Cell Lines.

Chia-Che Chang; Cheng-Ping Kuan; Jyun-Yi Lin; Jui-Sheng Lai; Tsing-Fen Ho

Tanshinone IIA (TIIA) extracted from Salvia miltiorrhiza has been shown to possess antitumor and TRAIL-sensitizing activity. The involvement of DR5 in the mechanism whereby TIIA exerts its effects is unknown. This study aimed to explore the mechanism underlying TIIA augmentation of TRAIL-induced cell death in ovarian carcinoma cells. Cell viability was determined by MTS assay. Real-time RT-PCR and Western blotting were used to assess the mRNA and protein expression of relating signaling proteins. Transcriptional activation was explored by a dual-luciferase reporter assay. We found that TIIA sensitized human ovarian carcinoma cells to TRAIL-induced extrinsic apoptosis. Combined treatment with subtoxic concentrations of TIIA and TRAIL was more effective than single treatments with respect to cytotoxicity, clonogenic inhibition, and the induction of caspase-8 and PARP activity in ovarian carcinoma cell lines TOV-21G and SKOV3. TIIA induced DR5 protein and mRNA expression in a concentration-dependent manner. DR5/Fc treatment markedly suppressed the TRAIL cytotoxicity enhanced by TIIA. These results indicate that DR5 plays an essential role in TIIA-induced TRAIL sensitization and that induction of DR5 by TIIA is mediated through the up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP). Knockdown of CHOP gene expression by shRNA attenuated DR5 up-regulation and rescued cell viability under the treatment of TIIA-TRAIL combination. TIIA promoted JNK-mediated signaling to up-regulated CHOP and thereby inducing DR5 expression as shown by the ability of a JNK inhibitor to potently suppress the TIIA-mediated activation of CHOP and DR5. In addition, the quenching of ROS using NAC prevented the induction of JNK phosphorylation and CHOP induction. Furthermore, inhibition of ROS by NAC significantly attenuated TRAIL sensitization by TIIA. Taken together, these data suggest that TIIA enhances TRAIL-induced apoptosis by upregulating DR5 receptors through the ROS-JNK-CHOP signaling axis in human ovarian carcinoma cells.


Toxicology and Applied Pharmacology | 2012

Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

Mu-Yun Pan; Yuh-Chiang Shen; Chien-Hsing Lu; Shu-Yi Yang; Tsing-Fen Ho; Yu-Ta Peng; Chia-Che Chang

Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosins capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosins tumoricidal effect. Mechanistically, prodigiosin engages the IRE1-JNK and PERK-eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death.


IEEE Transactions on Biomedical Engineering | 2015

A promising "TRAIL" of tanshinones for cancer therapy.

Tsing-Fen Ho; Chia-Che Chang

An ideal cancer therapy specifically targets cancer cells while sparing normal tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) elicits apoptosis by engaging its cognate death receptors (DRs—namely, DR4 and DR5. The cancer cell-selective proapoptotic action of TRAIL is highly attractive for cancer therapy, but clinical application of TRAIL is rather limited due to tumors’ inherent or acquired TRAIL resistance. Combining TRAIL with agents that reverse resistance to it has proved promising in the sensitization of TRAIL-induced apoptosis. Noteworthy, natural compounds have already been validated as potential resources for TRAIL sensitizers. In this review, we focus on the recently identified TRAILsensitizing effect of tanshinones, the anticancer ingredients of the medicinal plant Salvia miltiorrhiza (Danshen in Chinese). Research from our laboratories and others have revealed the synergy of a tanshinones-TRAIL combination in diverse types of cancer cells through up-regulation of DR5 and/or down-regulation of antiapoptotic proteins such as survivin. Thus, in addition to their anticancer mechanisms, tanshinones as TRAIL sensitizers hold great potential to be translated to TRAIL-based therapeutic modalities for combatting cancer.


Phytomedicine | 2015

Tanshinone IIA enhances the effects of TRAIL by downregulating survivin in human ovarian carcinoma cells

Jyun-Yi Lin; Yu-Min Ke; Jui-Sheng Lai; Tsing-Fen Ho

BACKGROUND Tanshinone IIA (TIIA), a diterpene quinone from the medicinal plant Salvia miltiorrhiza Bunge (Lamiaceae) was shown to possess apoptotic and TRAIL-sensitizing effects. Still, the molecular mechanisms whereby TIIA induces apoptosis remain largely unknown. PURPOSE The role of survivin, an inhibitor of apoptosis protein, in TIIA-induced apoptosis has never been addressed before and hence was the primary goal of this study. METHODS In this study, we explored the anticancer effect of TIIA in TOV-21G, SKOV3, and OVCAR3 ovarian carcinoma cells. Cytotoxicity was determined by MTS assay. Real-time RT-PCR and Western blotting were used to assess the mRNA and protein expression of related signaling proteins. RESULTS Our results illustrated that TIIAs cytotoxic effect was caused by apoptosis with the involvement of caspases activity. Moreover, TIIA downregulated survivin in a concentration-dependent manner without affecting the expression of Bcl-2, Bcl-xL, and Bax. TIIA-induced survivin downregulation is regulated by both transcriptional processes and proteasomal degradation. Using TOV-21G cells as our cellular model, we demonstrated that TIIA-induced survivin downregulation requires p38 MAPK activation. Importantly, genetic overexpression of survivin rendered cells more resistant to TIIA, indicating an essential role of survivin downregulation in TIIA-induced apoptosis. This TRAIL sensitization effect of TIIA is ascribed to survivin downregulation because the effect was abrogated in cells that overexpressed survivin. CONCLUSION Our findings provide new insights into the action modes of TIIA-mediated anticancer effects and further implicate a rational design for cancer therapeutic regimens by combining TIIA-sensitized TRAIL via downregulating survivin to elicit ovarian cancer cell death.


Journal of Bioscience and Bioengineering | 2013

Proapoptotic and TRAIL-sensitizing constituents isolated from Salvia militiorrhiza (Danshen).

Chia-Che Chang; Jui-Sheng Lai; Chi-Shiuan Tsai; Song-Wei Ma; Jyun-Yi Lin; Lan-Ru Huang; Chien-Hsing Lu; En-Chih Liao; Tsing-Fen Ho

Natural compounds isolated from medicinal plants are invaluable resources for drug discovery. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent unique by its cancer cell-specific proapoptotic action, but its potential is heavily curbed by acquired resistance. We herein reported for the first time the identification of cytotoxic and TRAIL-sensitizing components of Salvia miltiorrhiza (Danshen), a traditional medicinal plant effective for treating cardiovascular disorders. Specifically, we found that the ethanol extract and its group 5 fraction of S. miltiorrhiza showed evident cytotoxicity against the human lung adenocarcinoma cell line A549 and ovarian adenocarcinoma cell line TOV-21G in a concentration-dependent manner. Likewise, a dose-dependent cytotoxicity was exerted by the standard solutions of cryptotanshinone, tanshinone I and tanshinone IIA, the major components of the group 5 fraction, where tanshinone IIA were most potent and displayed an IC₅₀ of 2.00 ± 0.36 μM and 2.75 ± 0.23 μM for A549 and TOV-21G, respectively. Induction of apoptosis represents an essential mechanism underlying tanshinone IIA-mediated cytotoxic action, as evidenced by the proteolytic processing of PARP upon tanshinone IIA stimulation and, importantly, a marked rescue of the viability of tanshinone IIA-treated cells when co-treatment with the pan-caspase inhibitor z-VAD-fmk. Noteworthy, stimulation with cryptotanshinone, tanshinone I or tanshinone IIA all effectively potentiated TRAIL to reduce viability and inhibit the colony formation capacity of TRAIL-resistant TOV-21G and SKOV3. Collectively, we revealed the proapoptotic and TRAIL-sensitizing components of S. miltiorrhiza and further implicated the potential of developing these active compounds as monotherapeutic agent or TRAIL-based therapy for cancer chemoprevention or chemotherapy.


Evidence-based Complementary and Alternative Medicine | 2013

Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

Shu-Yi Yang; Hui-Min Wang; Tai-Wen Wu; Yi-Ju Chen; Jeng-Jer Shieh; Ju-Hwa Lin; Tsing-Fen Ho; Ren-Jie Luo; Chung-Yi Chen; Chia-Che Chang

Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC) cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER) stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPL or dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents.


Vox Sanguinis | 2000

TT virus infection in screened Taiwanese blood donors.

Tsing-Fen Ho; Shu-Yi Yang; Y.-T. Huang; M.-H. Hsieh

Objective: TT virus (TTV) is a newly discovered human DNA virus of uncertain clinical significance. The aim of this study was to determine the prevalence of TTV infection among blood donors in Taiwan. Methods: Viral DNA was studied in 224 healthy blood donors and 118 deferred donors. DNA was extracted from plasma and amplified by seminested polymerase chain reaction with reported primer sets from a conserved region of the TTV genome. Results: The prevalence of TTV DNA in the deferred donors was 24.6%, significantly higher than in the healthy donors (11.9%). TTV was also more prevalent in those with hepatitis B surface antigen than in those without it (p = 0.002). Conclusion: In comparing normal with deferred Taiwanese blood donors, hepatitis B virus infection is linked to a higher prevalence of TTV infection.


Materials | 2016

Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

Ting-Ting Li; Ching Wen Lou; An-Pang Chen; Mong-Chuan Lee; Tsing-Fen Ho; Yueh-Sheng Chen; Jia-Horng Lin

To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM) observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT) and activated partial thromboplastin time (APTT) blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds.

Collaboration


Dive into the Tsing-Fen Ho's collaboration.

Top Co-Authors

Avatar

Chia-Che Chang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Chien-Hsing Lu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Jyun-Yi Lin

Central Taiwan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shu-Yi Yang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ching Wen Lou

Central Taiwan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jo Shu Chang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Ta Peng

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge