Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsugio Seki is active.

Publication


Featured researches published by Tsugio Seki.


Circulation Research | 2003

Arterial Endothelium-Specific Activin Receptor-Like Kinase 1 Expression Suggests Its Role in Arterialization and Vascular Remodeling

Tsugio Seki; Jihye Yun; S. Paul Oh

Abstract— Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVM). Two genes are linked to HHT: endoglin (ENG) in HHT1 and activin receptor-like kinase 1 (ACVRL1; ALK1) in HHT2. Although both genes are involved in the transforming growth factor &bgr; signaling pathways, the pathogenetic mechanisms for HHT remain elusive. It was shown that mutations in the Alk1 gene in mice and zebrafish resulted in an embryonic lethal phenotype due to severe dilation of blood vessels. We created a novel null mutant mouse line for Alk1 (Alk1lacZ) by replacing its exons, including the one that encodes the transmembrane domain, with the &bgr;-galactosidase gene. Using Alk1lacZ mice, we show that Alk1 is predominantly expressed in developing arterial endothelium. Alk1 expression is greatly diminished in adult arteries, but is induced in preexisting feeding arteries and newly forming arterial vessels during wound healing and tumor angiogenesis. We also show that hemodynamic changes, which require vascular remodeling, may regulate Alk1 expression. Our studies suggest the role of Alk1 signaling in arterialization and remodeling of arteries. Contrary to the current view of HHT as venous disease, our findings suggest that the arterioles rather than the venules are the primary vessels affected by the loss of an Alk1 allele, and that blood vessels with reduction in Alk1 expression may harbor defects in responding to demands for vascular remodeling.


Laboratory Investigation | 2006

Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development.

Tsugio Seki; Kwon-Ho Hong; S. Paul Oh

Transforming growth factor β (TGF-β) transmits signals through a heterotetrameric cell-surface complex of type II (TGFBR2) and type I (activin receptor-like kinase 5, ALK5; TGFBR1) serine/threonine kinase receptors, as well as Smad2/3. We have previously shown that another type I receptor, ALK1 (ACVRL1), can also mediate TGF-β signals via BMP-activated Smads in vascular endothelial cells (ECs). Our group and others have proposed the hypothesis that two TGF-β signaling pathways via ALK1 and ALK5 in vascular ECs may play a balancing role for controlling the proliferation and migration of ECs during angiogenesis. To address in vivo roles of this balance in vascular development, we have created a knockin mouse line that carries a lacZ reporter in the Alk5 gene locus (Alk5lacZ). Throughout development, a well-defined, nonubiquitous expression pattern of Alk5 expression was observed in multiple tissues, and organs. Overall, a high level of Alk5 expression was found in perichondria, periostea, and the mesenchymal layers underlying epithelia in the kidney, lung, and gallbladder. In blood vessels, contrasting to predominant Alk1 expression in arterial endothelium, Alk5 expression was localized in the medial and adventitial layers of blood vessels, but was undetectable in the intimal layer. In addition, although Alk5-null embryos exhibit a defect in the formation of vascular smooth muscle layers, the lumens of blood vessels are generated properly, which stands in contrast to the severe dilation of the vascular lumens in Alk1-null mice. These mutually exclusive expression patterns of Alk1 and Alk5 in blood vessels, as well as the undisturbed formation of the vascular lumens in Alk5-null embryos, suggest that each type I receptor has its own unique functions in vascular development. The Alk5lacZ mice will be a valuable resource in identifying the in vivo cellular targets of TGF-β family signals mediated by Alk5, both during embryonic development as well as in diverse pathological conditions.


Circulation Research | 2008

Perinatal Loss of Nkx2-5 Results in Rapid Conduction and Contraction Defects

Laura E. Briggs; Morihiko Takeda; Adolfo E. Cuadra; Hiroko Wakimoto; Melissa H. Marks; Alexandra J. Walker; Tsugio Seki; Suk Paul Oh; Jonathan Lu; Colin Sumners; Mohan K. Raizada; Nobuo Horikoshi; Ellen O. Weinberg; Kenji Yasui; Yasuhiro Ikeda; Kenneth R. Chien; Hideko Kasahara

Homeobox transcription factor Nkx2-5, highly expressed in heart, is a critical factor during early embryonic cardiac development. In this study, using tamoxifen-inducible Nkx2-5 knockout mice, we demonstrate the role of Nkx2-5 in conduction and contraction in neonates within 4 days after perinatal tamoxifen injection. Conduction defect was accompanied by reduction in ventricular expression of the cardiac voltage-gated Na+ channel pore-forming &agr;-subunit (Nav1.5-&agr;), the largest ion channel in the heart responsive for rapid depolarization of the action potential, which leads to increased intracellular Ca2+ for contraction (conduction–contraction coupling). In addition, expression of ryanodine receptor 2, through which Ca2+ is released from sarcoplasmic reticulum, was substantially reduced in Nkx2-5 knockout mice. These results indicate that Nkx2-5 function is critical not only during cardiac development but also in perinatal hearts, by regulating expression of several important gene products involved in conduction and contraction.


Journal of Biological Chemistry | 2007

Evolutionarily Conserved Mammalian Adenine Nucleotide Translocase 4 Is Essential for Spermatogenesis

Jeffrey V. Brower; Nemanja Rodić; Tsugio Seki; Marda Jorgensen; Naime Fliess; Anthony T. Yachnis; John R. McCarrey; S. Paul Oh; Naohiro Terada

The adenine nucleotide translocases (Ant) facilitate the transport of ADP and ATP by an antiport mechanism across the inner mitochondrial membrane, thus playing an essential role in cellular energy metabolism. We recently identified a novel member of the Ant family in mouse, Ant4, of which gene configuration as well as amino acid homology is well conserved among mammals. The conservation of Ant4 in mammals, along with the absence of Ant4 in nonmammalian species, suggests a unique and indispensable role for this ADP/ATP carrier in mammalian development. Of interest, in contrast to its paralog Ant2, which is encoded by the X chromosome and ubiquitously expressed in somatic cells, Ant4 is encoded by an autosome and selectively expressed in testicular germ cells. Immunohistochemical examination as well as RNA expression analysis using separated spermatogenic cell types revealed that Ant4 expression was particularly high in spermatocytes. When we generated Ant4-deficient mice by targeted disruption, a significant reduction in testicular size was observed without any other distinguishable abnormalities in the mice. Histological examination as well as stage-specific gene expression analysis in adult and neonatal testes revealed a severe reduction of spermatocytes accompanied by increased apoptosis. Subsequently, the Ant4-deficient male mice were infertile. Taken together, these data elucidated the indispensable role of Ant4 in murine spermatogenesis. Considering the unique conservation and chromosomal location of the Ant family genes in mammals, the Ant4 gene may have arisen in mammalian ancestors and been conserved in mammals to serve as the sole and essential mitochondrial ADP/ATP carrier during spermatogenesis where the sex chromosome-linked Ant2 gene is inactivated.


Molecular and Cellular Biology | 2004

B-Cell Translocation Gene 2 (Btg2) Regulates Vertebral Patterning by Modulating Bone Morphogenetic Protein/Smad Signaling

Sung Ok Park; Young Jae Lee; Hee-Sheung Lee; Tsugio Seki; Kwon-Ho Hong; Park J; Hideyuki Beppu; In Kyoung Lim; Yoon Jw; En Li; Seong-Jin Kim; Suk Paul Oh

ABSTRACT Btg2 is a primary p53 transcriptional target gene which may function as a coactivator-corepressor and/or an adaptor molecule that modulates the activities of its interacting proteins. We have generated Btg2-null mice to elucidate the in vivo function of Btg2. Btg2-null mice are viable and fertile but exhibit posterior homeotic transformations of the axial vertebrae in a dose-dependent manner. Consistent with its role in vertebral patterning, Btg2 is expressed in the presomitic mesoderm, tail bud, and somites during somitogenesis. We further provide biochemical evidence that Btg2 interacts with bone morphogenetic protein (BMP)-activated Smads and enhances the transcriptional activity of BMP signaling. In view of the genetic evidence that reduced BMP signaling causes posteriorization of the vertebral pattern, we propose that the observed vertebral phenotype in Btg2-null mice is due to attenuated BMP signaling.


Circulation Research | 2004

Isolation of a Regulatory Region of Activin Receptor-Like Kinase 1 Gene Sufficient for Arterial Endothelium-Specific Expression

Tsugio Seki; Kwon-Ho Hong; Jihye Yun; Seong-Jin Kim; S. Paul Oh

Activin receptor-like kinase 1 (Acvrl1; Alk1) is a type I receptor for transforming growth factor-beta (TGF-beta). ALK1 plays a pivotal role in vascular development and is involved in the development of hereditary hemorrhagic telangiectasia 2 (HHT2), a dominantly inherited vascular disorder, and pulmonary hypertension. We have previously shown that Alk1 is expressed predominantly in arterial endothelial cells (ECs). Despite recent discoveries of a number of artery-specific genes, the regulatory elements of these genes have not been characterized. To investigate the cis-acting elements essential for the artery-specific Alk1 expression, we have generated a series of transgenic constructs with various lengths and regions of Alk1 genomic fragments connected to a LacZ reporter gene, and analyzed the reporter gene expression in transgenic mice. We found that a 9.2-kb genomic fragment, which includes 2.7-kb promoter region and the entire intron 2, is sufficient to drive arterial endothelium-specific expression. The defined regulatory region, as well as the transgenic mouse lines, would be invaluable resources in studying the mechanisms underlying angiogenesis, arteriogenesis, and vascular disorders, such as HHT and pulmonary hypertension. The full text of this article is available online at http://circres.ahajournals.org.


Oncogene | 2001

Change in gene expression subsequent to induction of Pnn/DRS/memA: increase in p21 cip1/waf1

Yujiang Shi; Matthew Simmons; Tsugio Seki; S. Paul Oh; Stephen P. Sugrue

Pnn (PNN) is a nuclear and cell adhesion-related protein. Previous work has suggested that Pnn/DRS/memA is a potential tumor suppressor involved in the regulation of cell adhesion and cell migration. Using the ecdysone-inducible mammalian expression system, a stable inducible GFP-tagged human Pnn gene (PNNGFP) expressing 293 cell line was created (EcR293-PNNGFP). Cells induced to express PNNGFP not only exhibited increased cell–cell adhesion but also exhibited changes in cell growth and cell cycle progression. cDNA array analyses, together with real time PCR, revealed that the effects of exogenously expressed Pnn on cellular behavior may be linked to the regulation of the expression of specific subset genes. This subset includes cell cycle-related genes such as p21cip1/waf1, CDK4, CPR2; cell migration and invasion regulatory genes such as RhoA, CDK5, TIMP-1, MMP-7, and EMMPRIN; and MIC-1. Concordant with previous observations of Pnn-induced phenotype changes, genes coding for epithelial associated processes and cell division controls were elevated, while those coding for increased cell motility and cellular reorganizations were downregulated. We utilized p21 promoter-luciferase reporter constructs and demonstrated that a marked stimulation of p21 promoter activity in 293 cells correlated with increased Pnn expression. Taken together, these data indicate that Pnn may participate in the regulation of gene expression, thereby, positively promoting cell-cell adhesion, and negatively affecting cell migration and cell proliferation.


Gene | 2002

Sequencing analysis of a putative human O-sialoglycoprotein endopeptidase gene (OSGEP) and analysis of a bidirectional promoter between the OSGEP and APEX genes☆

Yuichi Seki; Shogo Ikeda; Hiroyuki Kiyohara; Hiroaki Ayabe; Tsugio Seki; Hideki Matsui

We performed cDNA and genomic cloning, sequencing and promoter analysis of the putative human O-sialoglycoprotein endopeptidase gene OSGEP (a homologue of gcp, a Pasteurella haemolytica A1 glycoprotease). The cloned OSGEP cDNA is 1311 nucleotides long, and encodes a protein consisting of 335 amino acids with predicted molecular mass of 36.4 kDa. The amino acid sequence of OSGEP showed 29.7% identity with that of P. haemolytica glycoprotease. The OSGEP gene is 7.75 kb long, consists of 11 exons and 10 introns, and lies immediately adjacent to the APEX gene (which encodes APEX nuclease, a multifunctional DNA repair enzyme) in 5-to-5 orientation. The promoter region of the OSGEP gene lacks the typical TATA box, but has putative regulatory elements in the CpG island. Northern blot analysis showed ubiquitous expression of the OSGEP gene in several tissues, and we observed similarities in expression patterns between OSGEP and APEX. In order to study the regulation of OSGEP gene expression, we analyzed the OSGEP promoter region by luciferase assay using HeLa cells. A functional region required for full transcription activity was narrowed down to a 23 bp region containing a CCAAT box. It has been reported that this CCAAT box promotes basal transcription in the APEX direction. We thus conclude that a bidirectional promoter containing a CCAAT box regulates transcription of both the OSGEP and APEX genes.


Molecular and Cellular Biology | 2011

Differential Role of Nkx2-5 in activation of the atrial natriuretic factor gene in the developing versus failing heart

Sonisha A. Warren; Ryota Terada; Laura E. Briggs; Colleen T. Cole-Jeffrey; Wei Ming Chien; Tsugio Seki; Ellen O. Weinberg; Thomas P. Yang; Michael T. Chin; Jörg Bungert; Hideko Kasahara

ABSTRACT Atrial natriuretic factor (ANF) is abundantly expressed in atrial cardiomyocytes throughout ontogeny and in ventricular cardiomyocytes in the developing heart. However, during cardiac failure and hypertrophy, ANF expression can reappear in adult ventricular cardiomyocytes. The transcription factor Nkx2-5 is one of the major transactivators of the ANF gene in the developing heart. We identified Nkx2-5 binding at three 5′ regulatory elements (kb −34, −31, and −21) and at the proximal ANF promoter by ChIP assay using neonatal mouse cardiomyocytes. 3C analysis revealed close proximity between the distal elements and the promoter region. A 5.8-kb fragment consisting of these elements transactivated a reporter gene in vivo recapitulating endogenous ANF expression, which was markedly reduced in tamoxifen-inducible Nkx2-5 gene knockout mice. However, expression of a reporter gene was increased and expanded toward the outer compact layer in the absence of the transcription repressor Hey2, similar to endogenous ANF expression. Functional Nkx2-5 and Hey2 binding sites separated by 59 bp were identified in the −34 kb element in neonatal cardiomyocytes. In adult hearts, this fragment did not respond to pressure overload, and ANF was induced in the absence of Nkx2-5. These results demonstrate that Nkx2-5 and its responsive cis-regulatory DNA elements are essential for ANF expression selectively in the developing heart.


Laboratory Investigation | 2007

Activin receptor-like kinase 1 is essential for placental vascular development in mice.

Kwon-Ho Hong; Tsugio Seki; S. Paul Oh

Activin receptor-like kinase 1 (ALK1) is involved in the pathogenesis of hereditary hemorrhagic telangiectasia type II (HHT2) and pulmonary arterial hypertension. We have previously shown that Alk1 is predominantly expressed in the arterial endothelium and plays a pivotal role in the formation of embryonic blood vessels. At present, however, little is known about the precise expression pattern and function of ALK1 during extra-embryonic vascular development. Using previously generated lacZ reporter lines, we sought to examine the expression pattern and role of Alk1 during placental development in mice. Alk1 expression was restricted to endothelial cells of fetal vessels from the emergence of chorioallantoic fusion to the late gestational period, and no detectable Alk1 expression was observed in syncytiotrophoblasts or spongiotrophoblasts. Predominant arterial expression was observed in the umbilical and fetal placental vessels as well as in embryonic vessels. Morphological analysis of Alk1-null embryos indicates that Alk1 is essential for the development of distinct umbilical arteries and veins. The invasion of chorioallantoic mesoderm into the forming labyrinth layer was largely unaffected in the Alk1-null placenta, but chorioallantoic vessels appeared to be severely dilated and fused. Results from this study provide valuable information regarding the role of ALK1 in the development of placental vasculature as well as insights into the pathogenesis of HHT.

Collaboration


Dive into the Tsugio Seki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seong-Jin Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jihye Yun

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

Harvard University

View shared research outputs
Researchain Logo
Decentralizing Knowledge