Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Paul Oh is active.

Publication


Featured researches published by S. Paul Oh.


Circulation Research | 2003

Arterial Endothelium-Specific Activin Receptor-Like Kinase 1 Expression Suggests Its Role in Arterialization and Vascular Remodeling

Tsugio Seki; Jihye Yun; S. Paul Oh

Abstract— Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVM). Two genes are linked to HHT: endoglin (ENG) in HHT1 and activin receptor-like kinase 1 (ACVRL1; ALK1) in HHT2. Although both genes are involved in the transforming growth factor &bgr; signaling pathways, the pathogenetic mechanisms for HHT remain elusive. It was shown that mutations in the Alk1 gene in mice and zebrafish resulted in an embryonic lethal phenotype due to severe dilation of blood vessels. We created a novel null mutant mouse line for Alk1 (Alk1lacZ) by replacing its exons, including the one that encodes the transmembrane domain, with the &bgr;-galactosidase gene. Using Alk1lacZ mice, we show that Alk1 is predominantly expressed in developing arterial endothelium. Alk1 expression is greatly diminished in adult arteries, but is induced in preexisting feeding arteries and newly forming arterial vessels during wound healing and tumor angiogenesis. We also show that hemodynamic changes, which require vascular remodeling, may regulate Alk1 expression. Our studies suggest the role of Alk1 signaling in arterialization and remodeling of arteries. Contrary to the current view of HHT as venous disease, our findings suggest that the arterioles rather than the venules are the primary vessels affected by the loss of an Alk1 allele, and that blood vessels with reduction in Alk1 expression may harbor defects in responding to demands for vascular remodeling.


Journal of Clinical Investigation | 2009

Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia

Sung Ok Park; Mamta Wankhede; Young Jae Lee; Eun-Jung Choi; Naime Fliess; Se-woon Choe; Seh-Hoon Oh; Glenn A. Walter; Mohan K. Raizada; Brian S. Sorg; S. Paul Oh

Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.


Circulation | 2008

Genetic Ablation of the Bmpr2 Gene in Pulmonary Endothelium Is Sufficient to Predispose to Pulmonary Arterial Hypertension

Kwon-Ho Hong; Young Jae Lee; Eun-Ji Lee; Sung Ok Park; Chul Han; Hideyuki Beppu; En Li; Mohan K. Raizada; Kenneth D. Bloch; S. Paul Oh

Background— Pulmonary arterial hypertension (PAH) is a rare but fatal lung disease of diverse origins. PAH is now further subclassified as idiopathic PAH, familial PAH, and associated PAH varieties. Heterozygous mutations in BMPR2 can be detected in 50% to 70% of patients with familial PAH and 10% to 40% of patients with idiopathic PAH. Although endothelial cells have been suspected as the cellular origin of PAH pathogenesis, no direct in vivo evidence has been clearly presented. The present study was designed to investigate whether endothelial Bmpr2 deletion can predispose to PAH. Methods and Results— The Bmpr2 gene was deleted in pulmonary endothelial cells using Bmpr2 conditional knockout mice and a novel endothelial Cre transgenic mouse line. Wide ranges of right ventricular systolic pressure were observed in mice with heterozygous (21.7 to 44.1 mm Hg; median, 23.7 mm Hg) and homozygous (20.7 to 56.3 mm Hg; median, 27 mm Hg) conditional deletion of Bmpr2 in pulmonary endothelial cells compared with control mice (19.9 to 26.7 mm Hg; median, 23 mm Hg) at 2 to 7 months of age. A subset of mice with right ventricular systolic pressure >30 mm Hg exhibited right ventricular hypertrophy and an increase in the number and wall thickness of muscularized distal pulmonary arteries. In the lungs of these mice with high right ventricular systolic pressure, the expression of proteins involved in the pathogenesis of PAH such as serotonin transporter and tenascin-C was elevated in distal arteries and had a high incidence of perivascular leukocyte infiltration and in situ thrombosis. Conclusions— Conditional heterozygous or homozygous Bmpr2 deletion in pulmonary endothelial cells predisposes mice to develop PAH.


Laboratory Investigation | 2006

Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development.

Tsugio Seki; Kwon-Ho Hong; S. Paul Oh

Transforming growth factor β (TGF-β) transmits signals through a heterotetrameric cell-surface complex of type II (TGFBR2) and type I (activin receptor-like kinase 5, ALK5; TGFBR1) serine/threonine kinase receptors, as well as Smad2/3. We have previously shown that another type I receptor, ALK1 (ACVRL1), can also mediate TGF-β signals via BMP-activated Smads in vascular endothelial cells (ECs). Our group and others have proposed the hypothesis that two TGF-β signaling pathways via ALK1 and ALK5 in vascular ECs may play a balancing role for controlling the proliferation and migration of ECs during angiogenesis. To address in vivo roles of this balance in vascular development, we have created a knockin mouse line that carries a lacZ reporter in the Alk5 gene locus (Alk5lacZ). Throughout development, a well-defined, nonubiquitous expression pattern of Alk5 expression was observed in multiple tissues, and organs. Overall, a high level of Alk5 expression was found in perichondria, periostea, and the mesenchymal layers underlying epithelia in the kidney, lung, and gallbladder. In blood vessels, contrasting to predominant Alk1 expression in arterial endothelium, Alk5 expression was localized in the medial and adventitial layers of blood vessels, but was undetectable in the intimal layer. In addition, although Alk5-null embryos exhibit a defect in the formation of vascular smooth muscle layers, the lumens of blood vessels are generated properly, which stands in contrast to the severe dilation of the vascular lumens in Alk1-null mice. These mutually exclusive expression patterns of Alk1 and Alk5 in blood vessels, as well as the undisturbed formation of the vascular lumens in Alk5-null embryos, suggest that each type I receptor has its own unique functions in vascular development. The Alk5lacZ mice will be a valuable resource in identifying the in vivo cellular targets of TGF-β family signals mediated by Alk5, both during embryonic development as well as in diverse pathological conditions.


Gene Expression Patterns | 2003

Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3.

Rahul N. Kanadia; Carl R. Urbinati; Valerie J Crusselle; Defang Luo; Young-Jae Lee; Jeffrey K. Harrison; S. Paul Oh; Maurice S. Swanson

The RNA-mediated pathogenesis model for the myotonic dystrophies DM1 and DM2 proposes that mutant transcripts from the affected genes sequester a family of double-stranded RNA-binding factors, the muscleblind proteins MBNL1, MBNL2 and MBNL3, in the nucleus. These proteins are homologues of the Drosophila muscleblind proteins that are required for the terminal differentiation of muscle and photoreceptor tissues, and thus nuclear sequestration of the human proteins might impair their normal function in muscle and eye development and maintenance. To examine this model further, we analyzed the expression pattern of the mouse Mbnl1, Mbnl2, and Mbnl3 genes during embryonic development and compared muscleblind gene expression to Dmpk since the RNA pathogenesis model for DM1 requires the coordinate synthesis of mutant Dmpk transcripts and muscleblind proteins. Our studies reveal a striking overlap between the expression of Dmpk and the muscleblind genes during development of the limbs, nervous system and various muscles, including the diaphragm and tongue.


Annals of Neurology | 2011

Arteriovenous malformation in the adult mouse brain resembling the human disease

Espen J. Walker; Hua Su; Fanxia Shen; Eun-Jung Choi; S. Paul Oh; Grant Chen; Michael T. Lawton; Helen Kim; Yongmei Chen; Wanqiu Chen; William L. Young

Brain arteriovenous malformations (bAVMs) are an important cause of hemorrhagic stroke. The underlying mechanisms are not clear. No animal model for adult bAVM is available for mechanistic exploration. Patients with hereditary hemorrhagic telangiectasia type 2 (HHT2) with activin receptor‐like kinase 1 (ALK1; ACVRL1) mutations have a higher incidence of bAVM than the general population. We tested the hypothesis that vascular endothelial growth factor (VEGF) stimulation with regional homozygous deletion of Alk1 induces severe dysplasia in the adult mouse brain, akin to human bAVM.


Journal of Biological Chemistry | 2007

Evolutionarily Conserved Mammalian Adenine Nucleotide Translocase 4 Is Essential for Spermatogenesis

Jeffrey V. Brower; Nemanja Rodić; Tsugio Seki; Marda Jorgensen; Naime Fliess; Anthony T. Yachnis; John R. McCarrey; S. Paul Oh; Naohiro Terada

The adenine nucleotide translocases (Ant) facilitate the transport of ADP and ATP by an antiport mechanism across the inner mitochondrial membrane, thus playing an essential role in cellular energy metabolism. We recently identified a novel member of the Ant family in mouse, Ant4, of which gene configuration as well as amino acid homology is well conserved among mammals. The conservation of Ant4 in mammals, along with the absence of Ant4 in nonmammalian species, suggests a unique and indispensable role for this ADP/ATP carrier in mammalian development. Of interest, in contrast to its paralog Ant2, which is encoded by the X chromosome and ubiquitously expressed in somatic cells, Ant4 is encoded by an autosome and selectively expressed in testicular germ cells. Immunohistochemical examination as well as RNA expression analysis using separated spermatogenic cell types revealed that Ant4 expression was particularly high in spermatocytes. When we generated Ant4-deficient mice by targeted disruption, a significant reduction in testicular size was observed without any other distinguishable abnormalities in the mice. Histological examination as well as stage-specific gene expression analysis in adult and neonatal testes revealed a severe reduction of spermatocytes accompanied by increased apoptosis. Subsequently, the Ant4-deficient male mice were infertile. Taken together, these data elucidated the indispensable role of Ant4 in murine spermatogenesis. Considering the unique conservation and chromosomal location of the Ant family genes in mammals, the Ant4 gene may have arisen in mammalian ancestors and been conserved in mammals to serve as the sole and essential mitochondrial ADP/ATP carrier during spermatogenesis where the sex chromosome-linked Ant2 gene is inactivated.


Hepatology | 2008

TIS21 Negatively Regulates Hepatocarcinogenesis by Disruption of Cyclin B1-Forkhead Box M1 Regulation Loop

Tae Jun Park; Ji-Yeon Kim; S. Paul Oh; So-Young Kang; Bong Wan Kim; Hee Jung Wang; Kye Yong Song; Hyoung Chin Kim; In Kyoung Lim

A functional and biochemical interaction of TIS21/BTG2/PC3 with Forkhead box M1 (FoxM1), essential transcription factor for hepatocyte regeneration and a master regulator of mitotic gene expression, was explored. Growth of hepatocellular carcinoma (HCC), developed by a single injection of diethylnitrosamine (DEN), was the same in both the TIS21+/+ and TIS21−/− mice until 6 months, whereas it was significantly higher in the TIS21−/− mice at 9 months. Expression of TIS21 was significantly lower in both human and murine HCCs than in the surrounding tissues. Forced expression of TIS21 impaired growth, proliferation, and tumorigenic potential of Huh7 cells. At the mechanistic level, TIS21 inhibited FoxM1 phosphorylation, a required modification for its activation, by reducing cyclin B1–cdk1 activity, examined by in vitro kinase assay and FoxM1 mutant analyses. These observations were further confirmed in vivo by the reciprocal control of TIS21 expression and FoxM1 phosphorylation in the diethylnitrosamine‐induced HCCs and TIS21−/− mouse embryonic fibroblast (MEF), in addition to increased expression of cyclin B1 and cdk1 activity. Conclusion: TIS21 negatively regulated hepatocarcinogenesis in part by disruption of the FoxM1–cyclin B1 regulatory loop, thereby inhibiting proliferation of transformed cells developed in mouse and human livers. (HEPATOLOGY 2008.)


Laboratory Investigation | 2011

TGF-β signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development

Ha Long Nguyen; Young Jae Lee; Jaekyung Shin; Eun-Ji Lee; Sung Ok Park; Joseph H. McCarty; S. Paul Oh

The various organs of the body harbor blood vessel networks that display unique structural and functional features; however, the mechanisms that control organ-specific vascular development and physiology remain mostly unknown. In the developing mouse brain, αvβ8 integrin-mediated TGF-β activation and signaling is essential for normal blood vessel growth and sprouting. Whether integrins activate TGF-β signaling pathways in vascular endothelial cells (ECs), neural cells, or both, has yet to be determined. Here, we have generated and characterized mice in which TGF-β receptors are specifically deleted in neuroepithelial cells via Nestin-Cre, or in ECs via a novel Cre transgenic strain (Alk1GFPCre) in which Cre is expressed under control of the endogenous activin receptor-like kinase 1 (Alk1) promoter. We report that deletion of Tgfbr2 in the neuroepithelium does not impact brain vascular development. In contrast, selective deletion of the Tgfbr2 or Alk5 genes in ECs result in embryonic lethality because of brain-specific vascular pathologies, including blood vessel morphogenesis and intracerebral hemorrhage. These data reveal for the first time that αvβ8 integrin-activated TGF-βs regulate angiogenesis in the developing brain via paracrine signaling to ECs.


PLOS ONE | 2009

Impaired Terminal Differentiation of Hippocampal Granule Neurons and Defective Contextual Memory in PC3/Tis21 Knockout Mice

Stefano Farioli-Vecchioli; Daniele Saraulli; Marco Costanzi; Luca Leonardi; Irene Cinà; Laura Micheli; Michele Nutini; Patrizia Longone; S. Paul Oh; Vincenzo Cestari; Felice Tirone

Neurogenesis in the dentate gyrus of the adult hippocampus has been implicated in neural plasticity and memory, but the molecular mechanisms controlling the proliferation and differentiation of newborn neurons and their integration into the synaptic circuitry are still largely unknown. To investigate this issue, we have analyzed the adult hippocampal neurogenesis in a PC3/Tis21-null mouse model. PC3/Tis21 is a transcriptional co-factor endowed with antiproliferative and prodifferentiative properties; indeed, its upregulation in neural progenitors has been shown to induce exit from cell cycle and differentiation. We demonstrate here that the deletion of PC3/Tis21 causes an increased proliferation of progenitor cells in the adult dentate gyrus and an arrest of their terminal differentiation. In fact, in the PC3/Tis21-null hippocampus postmitotic undifferentiated neurons accumulated, while the number of terminally differentiated neurons decreased of 40%. As a result, PC3/Tis21-null mice displayed a deficit of contextual memory. Notably, we observed that PC3/Tis21 can associate to the promoter of Id3, an inhibitor of proneural gene activity, and negatively regulates its expression, indicating that PC3/Tis21 acts upstream of Id3. Our results identify PC3/Tis21 as a gene required in the control of proliferation and terminal differentiation of newborn neurons during adult hippocampal neurogenesis and suggest its involvement in the formation of contextual memories.

Collaboration


Dive into the S. Paul Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chul Han

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Eun-Jung Choi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanxia Shen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge