Tsung-Hsien Chuang
National Health Research Institutes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tsung-Hsien Chuang.
Stem Cells | 2013
Jian Yang; Debbie Liao; Cong Chen; Yan Liu; Tsung-Hsien Chuang; Rong Xiang; Dorothy Markowitz; Ralph A. Reisfeld; Yunping Luo
The cancer stem cell (CSC) hypothesis has gained significant recognition as a descriptor of tumorigenesis. Additionally, tumor‐associated macrophages (TAMs) are known to promote growth and metastasis of breast cancer. However, it is not known whether TAMs mediate tumorigenesis through regulation of breast CSCs. Here, we report that TAMs promote CSC‐like phenotypes in murine breast cancer cells by upregulating their expression of Sox‐2. These CSC‐like phenotypes were characterized by increased Sox‐2, Oct‐4, Nanog, AbcG2, and Sca‐1 gene expression, in addition to increased drug‐efflux capacity, resistance to chemotherapy, and increased tumorigenicity in vivo. Downregulation of Sox‐2 in tumor cells by siRNA blocked the ability of TAMs to induce these CSC‐like phenotypes and inhibited tumor growth in vivo. Furthermore, we identified a novel epidermal growth factor receptor (EGFR)/signal transducers and activators of transcription 3 (Stat3)/Sox‐2 paracrine signaling pathway between macrophages and mouse breast cancer cells that is required for macrophage‐induced upregulation of Sox‐2 and CSC phenotypes in tumor cells. We showed that this crosstalk was effectively blocked by the small molecule inhibitors AG1478 or CDDO‐Im against EGFR and Stat3, respectively. Therefore, our report identifies a novel role for TAMs in breast CSC regulation and establishes a rationale for targeting the EGFR/Stat3/Sox‐2 signaling pathway for CSC therapy. STEM CELLS2013;31:248–258
Oncogene | 2010
Yunping Luo; He Zhou; Joerg A. Krueger; Charles D. Kaplan; Debbie Liao; Dorothy Markowitz; Cheng Liu; Tingmei Chen; Tsung-Hsien Chuang; Rong Xiang; Ralph A. Reisfeld
A growing body of evidence indicates that interactions between neoplastic cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are crucial in promoting tumor cell invasion and progression. Macrophages have an ambiguous role in these processes as this M1 phenotype correlates with tumoricidal capacity, whereas TAMs of M2 phenotype exert tumor-promoting effects. In this study, we provide evidence that interactions between mouse breast tumor cells and TAMs remodel the TME, leading to the upregulation of Fra-1, a member of the FOS family of transcription factor. In turn, this proto-oncogene initiates activation of the IL-6/JAK/Stat3 signaling pathway. This creates a malignant switch in breast tumor cells, leading to increased release of proangiogenic factors MMP-9, vascular endothelial growth factor and transforming growth factor-β from tumor cells and intensified invasion and progression of breast cancer. Proof of the concept for the crucial role played by transcription factor Fra-1 in regulating these processes was established by specific knockdown of Fra-1 with small interfering RNA, which resulted in a marked suppression of tumor cell invasion, angiogenesis and metastasis in a mouse breast cancer model. Such a strategy could eventually lead to future efficacious treatments of metastatic breast cancer.
The FASEB Journal | 2011
Congfeng Xu; Jin Liu; Li-Chung Hsu; Yunping Luo; Rong Xiang; Tsung-Hsien Chuang
Autophagy is one of the downstream effector mechanisms for elimination of intracellular microbes following activation of the Toll‐like receptors (TLRs). Although the detailed molecular mechanism for this cellular process is still unclear, Beclin 1, a key molecule for autophagy, has been suggested to play a role. Heat shock protein 90 (Hsp90) is a molecular chaperone that regulates the stability of signaling proteins. Herein, we show that Hsp90 forms a complex with Beclin 1 through an evolutionarily conserved domain to maintain the stability of Beclin 1. In monocytic cells, geldanamycin (GA), an Hsp90 inhibitor, effectively promoted proteasomal degradation of Beclin 1 in a concentration‐dependent (EC50 100 nM) and time‐dependent (t50 2 h) manner. In contrast, KNK437/Hsp inhibitor I had no effect. Hsp90 specifically interacted with Beclin 1 but not with other adapter proteins in the TLR signalsome. Treatment of cells with GA inhibited TLR3‐ and TLR4‐mediated autophagy. In addition, S. typhimurium infection‐induced autophagy was blocked by GA treatment. This further suggested a role of the Hsp90/Beclin 1 in controlling autophagy in response to microbial infections. Taken together, our data revealed that by maintaining the homeostasis of Beclin 1, Hsp90 plays a novel role in TLR‐mediated autophagy.—Xu, C., Liu, J., Hsu, L. ‐C., Luo, Y., Xiang, R., Chuang, T. ‐H. Functional interaction of Hsp90 and Beclin 1 modulates Toll‐like receptor‐mediated autophagy. FASEB J. 25, 2700‐2710 (2011). www.fasebj.org
Oncogene | 2014
Yang J; Zhuhong Zhang; Chen C; Yuying Liu; Si Q; Tsung-Hsien Chuang; Na Li; Gomez-Cabrero A; Ralph A. Reisfeld; Rong Xiang; Yunping Luo
One of the hallmarks of malignancy is the polarization of tumor-associated macrophages (TAMs) from a pro-immune (M1-like) phenotype to an immune-suppressive (M2-like) phenotype. However, the molecular basis of the process is still unclear. MicroRNA (miRNA) comprises a group of small, non-coding RNAs that are broadly expressed by a variety of organisms and are involved in cell behaviors such as suppression or promotion of tumorigenesis. Here, we demonstrate that miR-19a-3p, broadly conserved among vertebrates, was downregulated in RAW264.7 macrophage cells of the M2 phenotype in conditoned medium of 4T1 mouse breast tumor cells. This downregulation correlated with an increased expression of the Fra-1 gene, which was reported to act as a pro-oncogene by supporting the invasion and progression of breast tumors. We found significant upregulation of miR-19a-3p in RAW264.7 macrophages after transfection with a miR-19a-3p mimic that resulted in a significant suppression of the expression of this gene. In addition, we could measure the activity of binding between miR-19a-3p and Fra-1 with a psiCHECK luciferase reporter system. Further, transfection of RAW264.7 macrophage cells with the miR-19a-3p mimic decreased the expression of the Fra-1 downstream genes VEGF, STAT3 and pSTAT3. Most importantly, the capacity of 4T1 breast tumor cells to migrate and invade was impaired in vivo by the intratumoral injection of miR-19a-3p. Taken together, these findings indicate that miR-19a-3p is capable of downregulating the M2 phenotype in M2 macrophages and that the low expression of this miRNA has an important role in the upregulation of Fra-1 expression and induction of M2 macrophage polarization.
Journal of Biological Chemistry | 2006
Colleen Fearns; Qilin Pan; John C. Mathison; Tsung-Hsien Chuang
Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing microbial pathogens. Triad3A is an E3 ubiquitin-protein ligase that interacts with the Toll/interleukin-1 receptor domain of TLRs and promotes their proteolytic degradation. In the present study, we further investigated its activity on signaling molecules downstream of TLRs and tumor necrosis factor (TNF) receptor 1. Triad3A promoted down-regulation of two TIR domain-containing adapter proteins, TIRAP and TRIF, as well as a RIP1 but had no effect on other adapter molecules in either the TLRs or TNF-α signaling pathways. Multiple sequence alignment analysis suggested that RIP1 contains a TIR homologous domain, and mutation of amino acid residues in this domain identified three residues critical for its interaction with Triad3A. Moreover, Triad3A acted as a negative regulator in TNF-α signaling. Reduction of Triad3A expression by small interference RNAs rendered cells hyperresponsive to TNF-α stimulation. Conversely, overexpression of Triad3A in cells blocked TNF-α-induced cell activation. This negative regulation was effected independently of changes in the cellular protein level of RIP1. Further studies indicated that RIP1 formed a complex with Triad3A and heat shock protein 90 (Hsp90), which is a chaperone protein capable of maintaining the stability of its client proteins. Treatment of cells with geldanamycin to disrupt the Hsp90 complex led to proteasomal degradation of RIP1. Depletion of Triad3A by small interference RNA treatment inhibited geldanamycin-activated ubiquitination and proteolytic degradation of RIP1. These results suggest that Triad3A is an E3 ubiquitin-protein ligase to RIP1 and that Hsp90 and Triad3A cooperatively maintain the homeostasis of RIP1.
Molecular Immunology | 2010
Jin Liu; Congfeng Xu; Li-Chung Hsu; Yunping Luo; Rong Xiang; Tsung-Hsien Chuang
Toll-like receptors play important roles in regulating immunity against microbial infections. Toll-like receptor 8 (TLR8) belongs to a subfamily comprising TLR7, TLR8 and TLR9. Human TLR8 mediates anti-viral immunity by recognizing ssRNA viruses, and triggers potent anti-viral and antitumor immune responses upon ligation by synthetic small molecular weight ligands. Interestingly, distinct from human TLR8, mouse TLR8 was not responsive to ligand stimulation in the absence of polyT-oligodeoxynucleotides (polyT-ODN). The molecular basis for this distinct ligand recognition is still unclear. In the present study, we compared the activation of TLR8 from different species including mouse, rat, human, bovine, porcine, horse, sheep, and cat by ligand ligations. Only the TLR8s from the rodent species (i.e., mouse and rat TLR8s) failed to respond to ligand stimulation in the absence of polyT-ODN. Multiple sequence alignment analysis suggested that these two rodent TLR8s lack a five-amino-acid motif that is conserved in the non-rodent species with varied sequence. This small motif is located in an undefined region of the hTLR8 ectodomain, immediately following LRR-14. Deletion mutation analysis suggested that this motif is essential for the species-specific ligand recognition of hTLR8, whereas it is not required for self-dimerization and intracellular localization of this receptor.
Cancer Research | 2015
Chong Chen; Fengqi Cao; Lipeng Bai; Yuying Liu; Junling Xie; Wei Wang; Qin Si; Jian Yang; Antao Chang; Daojie Liu; Tsung-Hsien Chuang; Rong Xiang; Yunping Luo
Considerable evidence suggests that proinflammatory pathways drive self-renewal of cancer stem-like cells (CSC), but the underlying mechanisms remain mainly undefined. Here we report that the let7 repressor LIN28B and its regulator IKBKB (IKKβ) sustain cancer cell stemness by interacting with the Wnt/TCF7L2 (TCF4) signaling pathway to promote cancer progression. We found that LIN28B expression correlated with clinical progression and stemness marker expression in breast cancer patients. Functional studies demonstrated that the stemness properties of LIN28B-expressing human breast and lung cancer cells were enhanced by IKKβ, whereas loss of LIN28B abolished stemness properties in these settings. These phenomena were driven through interactions with TCF7L2, which enhanced LIN28B expression by direct binding to intron 1 of the LIN28B gene, which in turn promoted TCF7L2 mRNA translation through a positive feedback loop. Notably, RNAi-mediated silencing of LIN28B or pharmacologic inhibition of IKKβ was sufficient to suppress primary and metastatic tumor growth in vivo. Together, our results establish the LIN28B/TCF7L2 interaction loop as a central mediator of cancer stemness driven by proinflammatory processes during progression and metastasis, possibly offering a new therapeutic target for generalized interventions in advanced cancers.
Comparative Immunology Microbiology and Infectious Diseases | 2012
Jin Liu; Congfeng Xu; Yi-Ling Liu; Hanako Matsuo; Rebecca Pe-feng Hsieh; Jeng-Fan Lo; Ping-Hui Tseng; Chiun-Jye Yuan; Yunping Luo; Rong Xiang; Tsung-Hsien Chuang
Synthetic CpG-oligodeoxynucleotides (CpG-ODN) are potent adjuvants that accelerate and boost antigen-specific immune responses. Toll-like receptor 9 (TLR9) is the cellular receptor for these CpG-ODN. Previous studies have shown species-specific activation of mouse TLR9 (mTLR9) and human TLR9 (hTLR9) by their optimized CpG-ODN. The interaction between rabbit TLR9 (rabTLR9) and CpG-ODN, however, has not been previously investigated. Here, we cloned and characterized rabTLR9 and comparatively investigated the activation of the rabbit, mouse, and human TLR9 by CpG-ODN. The complete open reading frame of rabTLR9 encodes 1028 amino acid residues, which share 70.6% and 75.5% of the identities of mTLR9 and hTLR9, respectively. Rabbit TLR9 is preferentially expressed in immune cells rich tissues, and is localized in intracellular vesicles. While mTLR9 and hTLR9 displayed species-specific recognition of their optimized CpG-ODN, rabbit TLR9 was activated by these CpG-ODN without any preference. This result suggests that rabTLR9 has a broader ligand-recognition profile than mouse and human TLR9.
Clinical & Developmental Immunology | 2016
Da-Wei Yeh; Li-Rung Huang; Ya-Wen Chen; Chi-Ying F. Huang; Tsung-Hsien Chuang
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
PLOS ONE | 2014
Tsung-Hsien Chuang; Chao-Yang Lai; Ping-Hui Tseng; Chiun-Jye Yuan; Li-Chung Hsu
CpG-oligodeoxynucleotides (CpG-ODN) are potent immune stimuli being developed for use as adjuvants in different species. Toll-like receptor 9 (TLR9) is the cellular receptor for CpG-ODN in mammalian cells. The CpG-ODN with 18–24 deoxynucleotides that are in current use for human and mouse cells, however, have low activity with rabbit TLR9. Using a cell-based activation assay, we developed a type of CpG-ODN containing a GACGTT or AACGTT motif in 12 phosphorothioate-modified deoxynucleotides with potent stimulatory activity for rabbit TLR9. The developed CpG-ODN have higher activities than other developed CpG-ODN in eliciting antigen-nonspecific immune responses in rabbit splenocytes. When mixed with an NJ85 peptide derived from rabbit hemorrhagic disease virus, they had potent activities to boost an antigen-specific T cell activation and antibody production in rabbits. Compared to Freund’s adjuvant, the developed CpG-ODN are capable of boosting a potent and less toxic antibody response. The results of this study suggest that both the choice of CpG-motif and its length are important factors for CpG-ODN to effectively activate rabbit TLR9 mediated immune responses.