Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsutomu Endo is active.

Publication


Featured researches published by Tsutomu Endo.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Periodic retinoic acid–STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis

Tsutomu Endo; Katherine A. Romer; Ericka L. Anderson; Andrew E. Baltus; Dirk G. de Rooij; David C. Page

Significance As male sex cells mature into sperm, two pivotal transitions are spermatogonial differentiation (exit from the stem cell pool) and meiotic initiation. These transitions occur in physical proximity, with 8.6-d periodicity. We report that the gene Stra8, essential for meiotic initiation, also promotes (but is not required for) spermatogonial differentiation. Moreover, injected RA induces both transitions to occur precociously. We conclude that a periodic RA signal, acting instructively through the common target Stra8, coordinates these transitions. This RA signal intersects with two distinct windows of sex-cell competency, which both begin while RA levels are low; sex cells respond quickly to rising RA. These mechanisms help account for the elaborate organization of sperm production, and its prodigious output. Mammalian spermatogenesis—the transformation of stem cells into millions of haploid spermatozoa—is elaborately organized in time and space. We explored the underlying regulatory mechanisms by genetically and chemically perturbing spermatogenesis in vivo, focusing on spermatogonial differentiation, which begins a series of amplifying divisions, and meiotic initiation, which ends these divisions. We first found that, in mice lacking the retinoic acid (RA) target gene Stimulated by retinoic acid gene 8 (Stra8), undifferentiated spermatogonia accumulated in unusually high numbers as early as 10 d after birth, whereas differentiating spermatogonia were depleted. We thus conclude that Stra8, previously shown to be required for meiotic initiation, also promotes (but is not strictly required for) spermatogonial differentiation. Second, we found that injection of RA into wild-type adult males induced, independently, precocious spermatogonial differentiation and precocious meiotic initiation; thus, RA acts instructively on germ cells at both transitions. Third, the competencies of germ cells to undergo spermatogonial differentiation or meiotic initiation in response to RA were found to be distinct, periodic, and limited to particular seminiferous stages. Competencies for both transitions begin while RA levels are low, so that the germ cells respond as soon as RA levels rise. Together with other findings, our results demonstrate that periodic RA–STRA8 signaling intersects with periodic germ-cell competencies to regulate two distinct, cell-type-specific responses: spermatogonial differentiation and meiotic initiation. This simple mechanism, with one signal both starting and ending the amplifying divisions, contributes to the prodigious output of spermatozoa and to the elaborate organization of spermatogenesis.


Biology of Reproduction | 2008

Nuclear Histone Deacetylases Are Not Required for Global Histone Deacetylation During Meiotic Maturation in Porcine Oocytes

Tsutomu Endo; Kiyoshi Kano; Kunihiko Naito

Histone acetylation plays an important role in the regulation of chromatin structure and gene function. In mammalian oocytes, histones H3 and H4 are highly acetylated during the germinal vesicle (GV) stage, and global histone deacetylation takes place via a histone deacetylase (HDAC)-dependent mechanism after GV breakdown (GVBD). The presence of HDACs in the GVs of mammalian oocytes in spite of the high acetylation states of nuclear histones indicates that the HDACs in the nucleus are inactive but become activated after GVBD. However, the fluctuation pattern, the localization of HDAC activity during meiotic maturation and, moreover, the responsibility of nuclear HDACs for global histone deacetylation are still unknown. Here, we demonstrated using porcine oocytes that total HDAC activity was maintained throughout meiotic maturation, and high HDAC activity was observed in both the nucleus and the cytoplasm at the GV stage. The experiments with valproic acid (VPA), a specific class I HDAC inhibitor, revealed that the HDACs in GVs were class I, and those in the cytoplasm were other than class I. Interestingly, VPA had no effect on global histone deacetylation after GVBD, indicating that nuclear HDACs were not required for global histone deacetylation. To confirm this possibility, we removed the nuclei from immature oocytes, injected somatic cell nuclei into the enucleated oocytes, and showed that injected somatic cell nuclei were dramatically deacetylated after nuclear envelope breakdown. These results revealed that nuclear contents, including class I HDACs, are not required for the global histone deacetylation during meiosis, and that cytoplasmic HDACs other than class I are responsible for this process.


Animal Reproduction Science | 2009

Porcine Aurora A accelerates Cyclin B and Mos synthesis and promotes meiotic resumption of porcine oocytes

Yukio Nishimura; Tsutomu Endo; Kiyoshi Kano; Kunihiko Naito

Full-grown oocytes arrested at germinal vesicle stage contain many dormant maternal mRNAs, and Aurora A has been reported to play a key role for the translation of these maternal mRNAs in Xenopus oocytes. Although the presence of Aurora A has been reported in mammals, the functions of Aurora A on the protein synthesis and the meiotic resumption have never been elucidated in mammalian oocytes. In the present study, the effects of porcine Aurora A on meiotic resumption of porcine oocytes were examined. At first, we cloned porcine Aurora A from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was 77%, 86% and 54% homologous with mouse, human and Xenopus Aurora A, respectively. The Aurora A mRNA and large amounts of protein were present throughout maturation period in porcine oocytes. The overexpression of porcine Aurora A by the mRNA injection into immature porcine oocytes had no effects on Cyclin B synthesis and meiotic resumption. Therefore we constructed a mutated Aurora A (AA-Aurora A), which was replaced the expecting inhibitory phosphorylation sites, serines 283 and 284, to non-phosphorylatable alanines. The oocytes expressed AA-Aurora A were accelerated their Cyclin B synthesis and Rsk phosphorylation, an indicator of Mos synthesis, then their meiotic resumption was promoted significantly. These results suggest for the first time in mammalian oocytes that mammalian Aurora A stimulates the protein synthesis and promotes the meiotic resumption. In addition, we identified the inhibitory phosphorylation sites of porcine Aurora A, and indicate the presence of phosphorylation-dependent regulation mechanisms in mammalian Aurora A.


Biology of Reproduction | 2007

Porcine SPDYA2 (RINGO A2) Stimulates CDC2 Activity and Accelerates Meiotic Maturation of Porcine Oocytes

Sachi Kume; Tsutomu Endo; Yukio Nishimura; Kiyoshi Kano; Kunihiko Naito

Abstract RINGO, a protein with no homology to cyclin B, has been reported to be involved in activation of CDC2 and regulation of meiotic maturation in Xenopus oocytes. Although the presence of homologues of RINGO families, which are known as SPDY families, has been reported in mammals, their roles in meiotic maturation of mammalian oocytes have never been examined. In the present study, the effects of SPDY on meiotic maturation of porcine oocytes were examined. At first, Xenopus RINGO (xRINGO) mRNA was injected into immature porcine oocytes and found to significantly accelerate CDC2 activation and meiotic resumption. The CCNB (also known as cyclin B) synthesis was prematurely started at 12 h of culture, whereas it started at 18 h in normal oocytes. We next cloned RINGO A2 homologue in pig (pigSPDYA2) from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was more than 85% and 40% homologous with mammalian SPDYA2 and xRINGO, respectively. Acceleration effects similar to those by xRINGO were observed in CDC2 activation, meiotic resumption, and the start of CCNB synthesis in pigSPDYA2 mRNA-injected porcine oocytes. In clear contrast with the effects of xRINGO, which was accumulated abnormally in porcine oocytes and arrested them in the first meiotic metaphase (M1), pigSPDYA2 accelerated the meiotic progression, with about half of pigSPDYA2 mRNA-injected oocytes completing meiotic maturation within 30 h. These results suggest that pigSPDYA2 has important roles on meiotic maturation of porcine oocytes and that the rapid degradation of SPDY was necessary for the normal maturation of oocytes.


Biology of Reproduction | 2006

Study of Germinal Vesicle Requirement for the Normal Kinetics of Maturation/M-Phase-Promoting Factor Activity During Porcine Oocyte Maturation

Koji Sugiura; Kunihiko Naito; Tsutomu Endo; Hideaki Tojo

Abstract Mammalian immature oocytes contain large nuclei referred to as germinal vesicles (GVs). The translocation of maturation/M-phase promoting factor (MPF) into GVs just before the activation of MPF has been reported in several species. To examine whether the GV is required for MPF activation in mammalian oocytes, porcine immature oocytes were enucleated and their MPF activity and CCNB (also known as cyclin B) levels were investigated. The activation of MPF at the start of maturation was detected at normal levels in enucleated oocytes, whereas reactivation to induce the second meiosis was not observed. Although protein synthesis was found to be normal both qualitatively and quantitatively, even in the absence of the nucleus, CCNB1 did not sufficiently accumulate in the enucleated oocytes. The defects in the enucleated oocytes were reversed by the injection of GV material into the enucleated oocytes. Furthermore, the inhibition of CCNB1 degradation revealed drastic accumulation of CCNB1, indicating active synthesis of CCNB1 in enucleated oocytes. The mitogen-activated protein kinase cascade remained unaffected by enucleation. These results indicate that GV is not required for the activation of MPF during the first meiosis, but that it is required for the second meiosis because of its promotion of CCNB1 accumulation.


Reproduction | 2011

Histone exchange activity and its correlation with histone acetylation status in porcine oocytes.

Tsutomu Endo; Aoi Imai; Takuma Shimaoka; Kiyoshi Kano; Kunihiko Naito

In mammalian oocytes, histone H3 and histone H4 (H4) in the chromatin are highly acetylated at the germinal vesicle (GV) stage, and become globally deacetylated after GV breakdown (GVBD). Although nuclear core histones can be exchanged by cytoplasmic free histones in somatic cells, it remains unknown whether this is also the case in mammalian oocytes. In this study, we examined the histone exchange activity in maturing porcine oocytes before and after GVBD, and investigated the correlations between this activity and both the acetylation profile of the H4 N-terminal tail and the global histone acetylation level in the chromatin. We injected Flag-tagged H4 (H4-Flag) mRNA into GV oocytes, and found that the Flag signal was localized to the chromatin. We next injected mRNAs of mutated H4-Flag, which lack all acetylation sites and the whole N-terminal tail, and found that the H4 N-terminal tail and its modification were not necessary for histone incorporation into chromatin. Despite the lack of acetylation sites, the mutated H4-Flag mRNA injection did not decrease the acetylation level on the chromatin, indicating that the histone exchange occurs partially in the GV chromatin. In contrast to GV oocytes, the Flag signal was not detected on the chromatin after the injection of H4-Flag protein into the second meiotic metaphase oocytes. These results suggest that histone exchange activity changes during meiotic maturation in porcine oocytes, and that the acetylation profile of the H4 N-terminal tail has no effect on histone incorporation into chromatin and does not affect the global level of histone acetylation in it.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis

Tsutomu Endo; Elizaveta Freinkman; Dirk G. de Rooij; David C. Page

Significance Male mouse sex cells mature into sperm through a 35-d process punctuated by four transitions, two occurring before meiosis (spermatogonial differentiation and meiotic initiation) and two after meiosis (spermatid elongation and sperm release). The four transitions occur in proximity spatially and temporally, with an 8.6-d periodicity. We describe how this coordination is achieved. The premeiotic transitions were known to be regulated by retinoic acid (RA). We show that RA also regulates the two postmeiotic transitions. RA levels change periodically, and meiotic cells contribute to its production. The two postmeiotic transitions require RA from meiotic cells while the premeiotic transitions require RA from somatic cells. These elements underpin the spatiotemporal coordination of spermatogenesis to ensure constant sperm production throughout adult life. Mammalian spermatogenesis is an elaborately organized differentiation process, starting with diploid spermatogonia, which include germ-line stem cells, and ending with haploid spermatozoa. The process involves four pivotal transitions occurring in physical proximity: spermatogonial differentiation, meiotic initiation, initiation of spermatid elongation, and release of spermatozoa. We report how the four transitions are coordinated in mice. Two premeiotic transitions, spermatogonial differentiation and meiotic initiation, were known to be coregulated by an extrinsic signal, retinoic acid (RA). Our chemical manipulations of RA levels in mouse testes now reveal that RA also regulates the two postmeiotic transitions: initiation of spermatid elongation and spermatozoa release. We measured RA concentrations and found that they changed periodically, as also reflected in the expression patterns of an RA-responsive gene, STRA8; RA levels were low before the four transitions, increased when the transitions occurred, and remained elevated thereafter. We found that pachytene spermatocytes, which express an RA-synthesizing enzyme, Aldh1a2, contribute directly and significantly to RA production in testes. Indeed, chemical and genetic depletion of pachytene spermatocytes revealed that RA from pachytene spermatocytes was required for the two postmeiotic transitions, but not for the two premeiotic transitions. We conclude that the premeiotic transitions are coordinated by RA from Sertoli (somatic) cells. Once germ cells enter meiosis, pachytene spermatocytes produce RA to coordinate the two postmeiotic transitions. In combination, these elements underpin the spatiotemporal coordination of spermatogenesis and ensure its prodigious output in adult males.


Molecular Reproduction and Development | 2005

Changes in histone modifications during in vitro maturation of porcine oocytes.

Tsutomu Endo; Kunihiko Naito; Fugaku Aoki; Sachi Kume; Hideaki Tojo


Reproduction | 2006

Activities of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are not required for the global histone deacetylation observed after germinal vesicle breakdown (GVBD) in porcine oocytes.

Tsutomu Endo; Kunihiko Naito; Sachi Kume; Yukio Nishimura; Koji Kashima; Hideaki Tojo


Journal of Reproduction and Development | 2007

Meiotic Resumption of Porcine Immature Oocytes is Prevented by Ooplasmic Gsα Functions

Marie Morikawa; Mami Seki; Sachi Kume; Tsutomu Endo; Yukio Nishimura; Kiyoshi Kano; Kunihiko Naito

Collaboration


Dive into the Tsutomu Endo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Page

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizaveta Freinkman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge