Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Yoneda is active.

Publication


Featured researches published by Tsuyoshi Yoneda.


Proceedings of the National Academy of Sciences of the United States of America | 2015

An estimate of the number of tropical tree species

J. W. Ferry Slik; Víctor Arroyo-Rodríguez; Shin-ichiro Aiba; Patricia Alvarez-Loayza; Luciana F. Alves; Peter S. Ashton; Patricia Balvanera; Meredith L. Bastian; Peter J. Bellingham; Eduardo van den Berg; Luís Carlos Bernacci; Polyanna da Conceição Bispo; Lilian Blanc; Katrin Böhning-Gaese; Pascal Boeckx; Frans Bongers; Brad Boyle; M. Bradford; Francis Q. Brearley; Mireille Breuer-Ndoundou; Sarayudh Bunyavejchewin; Darley Calderado; Leal Matos; Miguel Castillo-Santiago; Eduardo Luís Martins Catharino; Shauna-Lee Chai; Yukai Chen; Eizi Suzuki; Natália Targhetta; Duncan W. Thomas

Significance People are fascinated by the amazing diversity of tropical forests and will be surprised to learn that robust estimates of the number of tropical tree species are lacking. We show that there are at least 40,000, but possibly more than 53,000, tree species in the tropics, in contrast to only 124 across temperate Europe. Almost all tropical tree species are restricted to their respective continents, and the Indo-Pacific region appears to be as species-rich as tropical America, with each of these two regions being almost five times as rich in tree species as African tropical forests. Our study shows that most tree species are extremely rare, meaning that they may be under serious risk of extinction at current deforestation rates. The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia

J. W. Ferry Slik; Shin-ichiro Aiba; Meredith L. Bastian; Francis Q. Brearley; Charles H. Cannon; Karl A. O. Eichhorn; Gabriella Fredriksson; Kuswata Kartawinata; Yves Laumonier; Asyraf Mansor; Antti Marjokorpi; Erik Meijaard; Robert J. Morley; Hidetoshi Nagamasu; Reuben Nilus; Eddy Nurtjahya; John A. Payne; Andrea Permana; Axel Dalberg Poulsen; Niels Raes; Soedarsono Riswan; Carel P. van Schaik; Douglas Sheil; Kade Sidiyasa; Eizi Suzuki; Johan L. C. H. van Valkenburg; Campbell O. Webb; Serge A. Wich; Tsuyoshi Yoneda; Rahmad Zakaria

The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.


Journal of Tropical Ecology | 2008

Spatial patterns and habitat associations of Fagaceae in a hill dipterocarp forest in Ulu Gadut, West Sumatra

Sen Nishimura; Tsuyoshi Yoneda; Shinji Fujii; Erizal Mukhtar; Mamoru Kanzaki

Spatial distribution patterns and habitat associations of Fagaceae species in a Fagaceae-codominated hill forest in Sumatra were investigated. Ten Fagaceae species believed to be zoochorous (animal-dispersed seed) and five codominant canopy and emergent anemochorous (wind-dispersed seed) species from Anacardiaceae and Dipterocarpaceae were studied. Five Fagaceae species and all codominant anemochorous species were significantly aggregated while the other five Fagaceae species showed a random distribution pattern. The median distance of small saplings from the nearest reproductively mature tree tended to be shorter for aggregated species than spatially random species. This implied that some Fagaceae species dispersed over longer distances than anemochorous species. Relationships between four habitat variables and distribution of the target species were examined with torus-translation tests. Three Quercus and one Lithocarpus species showed positive habitat associations. Two Quercus species aggregated at the preferred habitat, but the others were randomly distributed. Thus tree species with specific habitat preference do not only aggregate at the preferred habitat. The three ridge-specialist Quercus species showed gradual changes in habitat association, which could reflect avoidance of competition among the species. Most of the Lithocarpus species showed little correlation with habitat variables. Coexistence of the three Quercus species partly reflected subtle differences in topographical preferences. Distribution of five of the six Lithocarpus species was unrelated to topography, so other mechanisms must be sought to account for the maintenance of coexistence in this species-rich genus.


Journal of Tropical Ecology | 2011

Sprouting traits of Fagaceae species in a hill dipterocarp forest, Ulu Gadut, West Sumatra

Sen Nishimura; Tsuyoshi Yoneda; Shinji Fujii; Erizal Mukhtar; Mamoru Kanzaki; Seiichi Ohta

The size distribution of a tree species gives important information about its regeneration strategy. For example, a tree species that regenerates primarily by sprouting will, in theory, have fewer seedlings than species that regenerate from seedlings, which generally form an L-shaped population size structure because of trade-offs in resource allocation between vegetative sprouting and sexual reproduction (Bellingham & Sparrow 2000, Loehle 2000). The results of some field studies suggest that the number of seedlings decreases with increasing dominance of multi-stemmed sprouters (Kruger et al . 1997, Zimmerman et al . 1994). In their study of four co-occurring species of Castanopsis (Fagaceae), Nanami et al . (2004) showed that species with a high frequency of sprouting adults had fewer juveniles and vice versa. This suggested that these species were able to co-exist as a result of trade-offs between investment in seedlings and sprouting. In this study, we investigated the sprouting trait of 17 co-occurring Fagaceae species in a Sumatran hill forest. The forest stand at this site shows a varied population structure across species, and hence, should have a varied life history. We tested the correlation between population skewness and proportion of sprouting trees, following the methods of Nanami et al . (2004). We hypothesized that the species that frequently form multi-stemmed sprouts will show a lower turnover of individuals because multi-stemmed architecture favours persistence (Bellingham & Sparrow 2009).


Global Ecology and Biogeography | 2013

Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

J. W. Ferry Slik; Gary D. Paoli; Krista L. McGuire; Iêda Leão do Amaral; Jorcely Barroso; Meredith L. Bastian; Lilian Blanc; Frans Bongers; Patrick Boundja; Connie J. Clark; Murray Collins; Gilles Dauby; Yi Ding; Jean-Louis Doucet; Eduardo Eler; Leandro V. Ferreira; Olle Forshed; Gabriella Fredriksson; Jean-François Gillet; David J. Harris; Miguel E. Leal; Yves Laumonier; Yadvinder Malhi; Asyraf Mansor; Emanuel H. Martin; Kazuki Miyamoto; Alejandro Araujo-Murakami; Hidetoshi Nagamasu; Reuben Nilus; Eddy Nurtjahya


Tropics | 1994

Horizontal Variance of Stand Structure and Productivity in a Tropical Foothill Rain Forest, West Sumatra, Indonesia.

Tsuyoshi Yoneda; Kazuhiko Ogino; Takashi Kohyama; Rusjdi Tamin; Syahbuddin; Martis Rahman


Tropics | 2006

Stand structure and dynamics of a tropical secondary forest : A rural forest in West Sumatra, Indonesia

Tsuyoshi Yoneda; Hiromi Mizunaga; Sen Nishimura; Shinji Fujii; Rusdji Tamin


Tropics | 2006

Factors influencing the floristic composition of a hill forest in West Sumatra

Sen Nishimura; Tsuyoshi Yoneda; Shinji Fujii; Erizal Mukhtar; Hisashi Abe; Mamoru Kanzaki


Tropics | 2006

Altitudinal distribution of Fagaceae in West Sumatra

Shinji Fujii; Sen Nishimura; Tsuyoshi Yoneda


Tropics | 2006

Impacts of recent dry weather on a tropical rain forest in Sumatra with special reference to stand dynamics during the last two decades

Tsuyoshi Yoneda; Hiromi Mizunaga; Sen Nishimura; Shinji Fujii; Erizal Mukhtar; Mitsuru Hotta; Kazuhiko Ogino

Collaboration


Dive into the Tsuyoshi Yoneda's collaboration.

Top Co-Authors

Avatar

Sen Nishimura

Forest Research Institute Malaysia

View shared research outputs
Top Co-Authors

Avatar

Shinji Fujii

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge