Tugba Kilic
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tugba Kilic.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Yu Shrike Zhang; Julio Aleman; Su Ryon Shin; Tugba Kilic; Duckjin Kim; Seyed Ali Mousavi Shaegh; Solange Massa; Reza Riahi; Su‐Kyoung Chae; Ning Hu; Huseyin Avci; Weijia Zhang; Antonia Silvestri; Amir Sanati Nezhad; Ahmad Manbohi; Fabio De Ferrari; Alessandro Polini; Giovanni Calzone; Noor Shaikh; Parissa Alerasool; Erica Budina; Jian Kang; Nupura S Bhise; João Ribas; Adel Pourmand; Aleksander Skardal; Thomas Shupe; Colin E. Bishop; Mehmet R. Dokmeci; Anthony Atala
Significance Monitoring human organ-on-a-chip systems presents a significant challenge, where the capability of in situ continual monitoring of organ behaviors and their responses to pharmaceutical compounds over extended periods of time is critical in understanding the dynamics of drug effects and therefore accurate prediction of human organ reactions. In this work, we report a fully integrated modular physical, biochemical, and optical sensing platform, interfaced through a fluidics-routing breadboard with a multi–organ-on-a-chip system to achieve in situ, continual, and automated sensing of microenvironment biophysical and biochemical parameters. It is anticipated that our platform technology that is conveniently compatible with existing organ-on-a-chip models will potentially enhance their performance in drug screening by providing a multitude of sensing data not previously available. Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.
Biosensors and Bioelectronics | 2013
Tugba Kilic; Seda Nur Topkaya; Mehmet Ozsoz
microRNA (miRNA) has drawn a great attention in biomedical research due to its functions on biological processes. Detection of miRNAs is a big challenge since the amount present in real samples is very low and the length of them is short. In this study, for the first time an electrochemical biosensor for detection of mir21 using the oxidation signal of protein 19 (p19) as a molecular caliper was designed. The proposed method enables detection of mir21 in direct, rapid, sensitive, inexpensive and label-free way. Binding specificity of the p19 to 20-23 base pair length double stranded RNA (dsRNA) and direct/water-mediated intermolecular contacts between the fusion protein and miRNA allows detection of miRNA-antimiRNA hybrid structure. The detection of mir21 was achieved in picomole sensitivity through the changes of intrinsic p19 oxidation signals observed at +0.80 V with Differential Pulse Voltammetry (DPV) and the specifity of the designed sensor was proved by control studies.
Analytical Chemistry | 2016
Su Ryon Shin; Yu Shrike Zhang; Duckjin Kim; Ahmad Manbohi; Huseyin Avci; Antonia Silvestri; Julio Aleman; Ning Hu; Tugba Kilic; Wendy Keung; Martina Righi; Pribpandao Assawes; Hani A. Alhadrami; Ronald A. Li; Mehmet R. Dokmeci; Ali Khademhosseini
Continual monitoring of secreted biomarkers from organ-on-a-chip models is desired to understand their responses to drug exposure in a noninvasive manner. To achieve this goal, analytical methods capable of monitoring trace amounts of secreted biomarkers are of particular interest. However, a majority of existing biosensing techniques suffer from limited sensitivity, selectivity, stability, and require large working volumes, especially when cell culture medium is involved, which usually contains a plethora of nonspecific binding proteins and interfering compounds. Hence, novel analytical platforms are needed to provide noninvasive, accurate information on the status of organoids at low working volumes. Here, we report a novel microfluidic aptamer-based electrochemical biosensing platform for monitoring damage to cardiac organoids. The system is scalable, low-cost, and compatible with microfluidic platforms easing its integration with microfluidic bioreactors. To create the creatine kinase (CK)-MB biosensor, the microelectrode was functionalized with aptamers that are specific to CK-MB biomarker secreted from a damaged cardiac tissue. Compared to antibody-based sensors, the proposed aptamer-based system was highly sensitive, selective, and stable. The performance of the sensors was assessed using a heart-on-a-chip system constructed from human embryonic stem cell-derived cardiomyocytes following exposure to a cardiotoxic drug, doxorubicin. The aptamer-based biosensor was capable of measuring trace amounts of CK-MB secreted by the cardiac organoids upon drug treatments in a dose-dependent manner, which was in agreement with the beating behavior and cell viability analyses. We believe that, our microfluidic electrochemical biosensor using aptamer-based capture mechanism will find widespread applications in integration with organ-on-a-chip platforms for in situ detection of biomarkers at low abundance and high sensitivity.
Biosensors and Bioelectronics | 2017
Merve Kaplan; Tugba Kilic; Günnur Güler; Jihane Mandli; Aziz Amine; Mehmet Ozsoz
In the proposed study, for the first time, sensitive electrochemical detection of a breast cancer biomarker microRNA (miRNA), mir-21 was achieved via electropolymerized polypyrrole (PPy) modified pencil graphite electrodes (PPy/PGE). The detection of hybridization of electrochemically doped probe miRNA, antimir-21, with its complementary target, mir-21 was monitored by either electrochemical impedance spectroscopy (EIS) via comparison of charge transfer resistance (Rct) values before and after hybridization or by electrochemical reduction signal of an hybridization indicator, Meldolas blue (MDB). The study covers all the optimization steps for hybridization procedure and electropolymerization of pyrrole as well as detection from real samples of breast cancer cell line, MCF-7. The designed sensor shows a high selectivity and a low detection limit of 0.17nM thanks to electrical conductivity and porous structure of PPy.
Advanced Science | 2017
Su Ryon Shin; Tugba Kilic; Yu Shrike Zhang; Huseyin Avci; Ning Hu; Duckjin Kim; Cristina Branco; Julio Aleman; Solange Massa; Antonia Silvestri; Jian Kang; Anna Desalvo; Mohammed Abdullah Hussaini; Su Kyoung Chae; Alessandro Polini; Nupura S Bhise; Mohammad Asif Hussain; HeaYeon Lee; Mehmet R. Dokmeci; Ali Khademhosseini
Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label‐free microfluidic electrochemical (EC) biosensor with a unique built‐in on‐chip regeneration capability for continual measurement of cell‐secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver‐on‐a‐chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme‐linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long‐term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms.
Biosensors and Bioelectronics | 2018
Tugba Kilic; Arzum Erdem; Mehmet Ozsoz; Sandro Carrara
As being the most extensively studied, non-coding, evolutionary conserved, post-transcriptional gene regulators of genome, microRNAs (miRNAs) have taken great attention among various disciplines due to their important roles in biological processes and link with cancer. Due to their diagnostic value, there have been many conventional methods used in detection of miRNAs including northern blotting, quantitative real time PCR (qRT-PCR) and microarray technology besides novel techniques based on various nanotechnology approaches and molecular biology tools including miRNA biosensors. The aim of this review is to explain the importance of miRNAs in biomedical field with an emphasis on early cancer diagnosis by overviewing both research based and commercially available miRNA detection methods in the last decade considering their strengths and weakness with an emphasis on miRNA biosensors.
Applied Microbiology and Biotechnology | 2017
Akbar Khalilpour; Tugba Kilic; Saba Khalilpour; Mario Moisés Alvarez; Iman K. Yazdi
In the post-genome age, proteomics is receiving significant attention because they provide an invaluable source of biological structures and functions at the protein level. The search for disease-specific biomarkers for diagnostic and/or therapeutic applications is one of the areas that proteomics is having a significant impact. Thus, the identification of a “good” biomarker enables a more accurate early diagnosis and prognosis of disease. Rapid advancements in mass spectrometry (MS) instrumentation, liquid chromatography MS (LCMS), protein microarray technology, and other protein profiling methodologies have a substantial expansion of our toolbox to identify disease-specific protein and peptide biomarkers. This review covers a selection of widely used proteomic technologies for biomarker discovery. In addition, we describe the most commonly used approaches for diagnosis based on proteomic biomarkers and further discuss trends and critical challenges during development of cost-effective rapid diagnostic tests and microfluidic diagnostic systems based on proteomic biomarkers.
ieee sensors | 2016
Tugba Kilic; Sandro Carrara; Valerie Brunner; Laurent Audoly
Detection of antipsychotic drugs are of great importance to inform the determination of optimum dosage for amelioration and remission rates, improving side effect profile and track patient compliance to the treatment. Up to date, various spectroscopic and chromatographic techniques have been used for this purpose but all methods present in the literature needed pre-treatment of the biological. Moreover, all these methods are not suitable for Point-of-care applications. In this work, for the first time, an electrochemical biosensor for the detection of a novel antipsychotic drug from serum has been designed with robust selectivity. The designed biosensor displays low nanomolar to micromolar detection range and, thank to his electrochemical method, provides a potentially suitable platform for future point-of-care applications.
Biosensors and Bioelectronics | 2018
Tugba Kilic; Valerie Brunner; Laurent Audoly; Sandro Carrara
Schizophrenia treatment may see a paradigm shift due to development of new atypical antipsychotic drugs (APDs), with better tolerability due to more selective dopamine (DA) receptor blockade. Monitoring of these APD candidates in biological fluids is of great importance to reduce the development cost, to clarify the mechanism of action and ultimately to support the demonstration of efficacy of these molecules. Electrochemical approaches have attracted great attention for monitoring DA and APD levels but none of the methods developed so far aimed to screen APD candidates. Herein, by this work, we propose for the first time an electrochemical ligand-binding approach for antipsychotic drug screening where competitive binding of a novel APD and DA to a dopamine D3 receptor (D3R) was investigated by looking at electrochemical signals of DA and drug before and after D3R interaction. D3R peptide was incubated with DA and/or drug first and then changes in electrochemical oxidation signals of free DA and the drug was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Circular Dichroism spectroscopy was used to investigate the secondary structure of the peptide upon binding with either drug and/or DA.
Scientific Reports | 2018
Tugba Kilic; Ana Valinhas; Ivan Wall; Philippe Renaud; Sandro Carrara
Nanoscale extracellular vesicles (EVs) including exosomes (50–150 nm membrane particles) have emerged as promising cancer biomarkers due to the carried genetic information about the parental cells. However the sensitive detection of these vesicles remains a challenge. Here we present a label-free electrochemical sensor to measure the EVs secretion levels of hypoxic and normoxic MCF-7 cells. The sensor design includes two consecutive steps; i) Au electrode surface functionalization for anti-CD81 Antibody and ii) EVs capture. The label-free detection of EVs was done via Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). The working linear range for the sensor was 102–109 EVs/ml with an LOD 77 EVs/mL and 379 EVs/ml for EIS and DPV based detection. A blood-abundant protein, RhD was used for the selectivity test. In order to assess the performance of the biosensor, the level of EVs secretion by the human breast cancer MCF-7 cell line was compared with enzyme-linked immunosorbent assays (ELISA) and Nanoparticle Tracking Analysis (NTA). Designed label-free electrochemical sensors utilized for quantification of EVs secretion enhancement due to CoCl2-induced hypoxia and 1.23 fold increase with respect to normoxic conditions was found.