Tullio Ricci
Leonardo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tullio Ricci.
Journal of Geophysical Research | 2008
A. Revil; Anthony Finizola; S. Piscitelli; Enzo Rizzo; Tullio Ricci; A. Crespy; B. Angeletti; M. Balasco; S. Barde Cabusson; Laura Bennati; Alexandre Boleve; S. Byrdina; N. Carzaniga; F. Di Gangi; Julie Morin; A. Perrone; M. Rossi; E. Roulleau; Barbara Suski
La Fossa cone is an active stratovolcano located on Vulcano Island in the Aeolian Archipelago (southern Italy). Its activity is characterized by explosive phreatic and phreatomagmatic eruptions producing wet and dry pyroclastic surges, pumice fall deposits, and highly viscous lava flows. Nine 2-D electrical resistivity tomograms (ERTs; electrode spacing 20 m, with a depth of investigation >200 m) were obtained to image the edifice. In addition, we also measured the self-potential, the CO2 flux from the soil, and the temperature along these profiles at the same locations. These data provide complementary information to interpret the ERT profiles. The ERT profiles allow us to identify the main structural boundaries (and their associated fluid circulations) defining the shallow architecture of the Fossa cone. The hydrothermal system is identified by very low values of the electrical resistivity ( 400 Ω m). Inside the crater it is possible to follow the plumbing system of the main fumarolic areas. On the flank of the edifice a thick layer of tuff is also marked by very low resistivity values (in the range 1–20 Ω m) because of its composition in clays and zeolites. The ashes and pyroclastic materials ejected during the nineteenth-century eruptions and partially covering the flank of the volcano correspond to relatively resistive materials (several hundreds to several thousands Ω m). We carried out laboratory measurements of the electrical resistivity and the streaming potential coupling coefficient of the main materials forming the volcanic edifice. A 2-D simulation of the groundwater flow is performed over the edifice using a commercial finite element code. Input parameters are the topography, the ERT cross section, and the value of the measured streaming current coupling coefficient. From this simulation we computed the self-potential field, and we found good agreement with the measured self-potential data by adjusting the boundary conditions for the flux of water. Inverse modeling shows that self-potential data can be used to determine the pattern of groundwater flow and potentially to assess water budget at the scale of the volcanic edifice.
Geophysical Research Letters | 2017
S. Pucci; P. M. De Martini; R. Civico; Fabio Villani; R. Nappi; Tullio Ricci; R. Azzaro; Carlo Alberto Brunori; Marco Caciagli; F. R. Cinti; Vincenzo Sapia; R. De Ritis; Francesco Mazzarini; Simone Tarquini; G. Gaudiosi; R. Nave; G. Alessio; A. Smedile; L. Alfonsi; L. Cucci; D. Pantosti
On 24 August 2016, a Mw 6.0 normal faulting earthquake struck central Italy, causing about 300 fatalities and heavy damage. A geological survey collected the coseismic effects observed at the surface in order to evaluate two competing hypotheses about their nature: surface faulting versus gravitational deformation. We find that the most significant geological effect is a 5.2 km-long alignment of ground ruptures along the Mt. Vettore Fault-System. These ruptures are independent from lithology, topography, morphology and change in slope and exhibit an average dip slip displacement of ~13 cm. Geometry, kinematics and dimensional properties of this zone of deformation strongly lead us to favor the primary surface faulting hypothesis that fits well the predicted estimates from experimental scaling-law relationships. Our study provides relevant hints for surface faulting in extensional domains, contributing to implement the worldwide database of the moderate earthquakes.
Journal of Volcanology and Geothermal Research | 2014
Niklas Linde; Ludovic Baron; Tullio Ricci; Anthony Finizola; A. Revil; Filippo Muccini; Luca Cocchi; Cosmo Carmisciano
We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 × 1 m digital elevation model, and a 15 × 15 m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m^−3, with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m^−3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and N64) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively.
Journal of Geophysical Research | 2014
D. Granieri; M. L. Carapezza; Franco Barberi; Massimo Ranaldi; Tullio Ricci; Luca Tarchini
La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the craters rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000–7000 ppm in low-wind conditions and pose a health hazard for visitors.
Journal of Geophysical Research | 2017
Damien Gaudin; Jacopo Taddeucci; Piergiorgio Scarlato; Elisabetta Del Bello; Tullio Ricci; Tim R. Orr; Bruce F. Houghton; Andrew J. L. Harris; Sandro Rao; Augusto Bucci
Strombolian eruptions are among the most common subaerial styles of explosive volcanism worldwide. Distinctive features of each volcano lead to a correspondingly wide range of variations of magnitude and erupted products, but most papers focus on a single type of event at a single volcano. Here, in order to emphasize the common features underlying this diversity of styles, we scrutinize a database from 35 different erupting vents, including 21 thermal infrared videos from Stromboli (Italy), Etna (Italy), Yasur (Vanuatu), and Batu Tara (Indonesia), from puffing, through rapid explosions to normal explosions, with variable ejection parameters and relative abundance of gas, ash, and bombs. Using field observations and high-speed thermal infrared videos processed by a new algorithm, we identify the distinguishing characteristics of each type of activity and how they may relate and interact. In particular, we record that ash-poor normal explosions may be preceded and followed by the onset or the increase of the puffing activity, while ash-rich explosions are emergent, i.e., with inflation of the free surface followed directly by emission of increasingly large gas pockets. Overall, we see that all Strombolian activities form a continuum arising from a common mechanism and are modulated by the combination of two well-established controls: (1) the length of the bursting gas pocket with respect to the vent diameter and (2) the presence and thickness of a high-viscosity layer in the uppermost part of the volcanic conduit.
Journal of Geophysical Research | 2017
Marceau Gresse; Jean Vandemeulebrouck; Svetlana Byrdina; Giovanni Chiodini; André Revil; Timothy C. Johnson; Tullio Ricci; Giuseppe Vilardo; Annarita Mangiacapra; Thomas Lebourg; Jacques Grangeon; Pascale Bascou; Laurent Metral
The Solfatara volcano is the main degassing area of the Campi Flegrei caldera, characterized by 60 years of unrest. Assessing such renewal activity is a challenging task because hydrothermal interactions with magmatic gases remain poorly understood. In this study, we decipher the complex structure of the shallow Solfatara hydrothermal system by performing the first 3-D, high-resolution, Electrical Resistivity Tomography (ERT) of the volcano. The 3-D resistivity model was obtained from the inversion of 43,432 resistance measurements performed on an area of 0.68 km2. The proposed interpretation of the multiphase hydrothermal structures is based on the resistivity model, a high-resolution infrared surface temperature image, and 1,136 soil CO2 flux measurements. In addition, we realized 27 soil Cation Exchange Capacity (CEC) and pH measurements demonstrating a negligible contribution of surface conductivity to the shallow bulk electrical conductivity. Hence, we show that the resistivity changes are mainly controlled by fluid content and temperature. The high-resolution tomograms identify for the first time the structure of the gas-dominated reservoir at 50 m depth that feeds the Bocca Grande fumarole through a ~10-m-thick channel. In addition, the resistivity model reveals a channel-like conductive structure where the liquid produced by steam condensation around the main fumaroles flows down to the Fangaia area within a buried fault. The model delineates the emplacement of the main geological structures: Mt Olibano, Solfatara crypto-dome, and tephra deposits. It also reveals the anatomy of the hydrothermal system, especially two liquid-dominated plumes, the Fangaia mud pool and the Pisciarelli fumarole, respectively.
Scientific Reports | 2017
Elisabetta Del Bello; Jacopo Taddeucci; Mattia de' Michieli Vitturi; Piergiorgio Scarlato; Daniele Andronico; Simona Scollo; Ulrich Kueppers; Tullio Ricci
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Geology | 2015
Tullio Ricci; Anthony Finizola; Stéphanie Barde-Cabusson; Eric Delcher; Salvatore Alparone; Salvatore Gambino; Vincenzo Milluzzo
Detecting volcanic unrest is of primary importance for eruption forecasting, especially on volcanoes characterized by highly dangerous , and often seemingly unpredictable, phreatic or phreatomagmatic eruptions. We present a simple and innovative analysis of shallow vertical temperature profiles to depths of 70 cm. These data were recorded at La Fossa cone of Vulcano (Aeolian Islands, Italy), during an episode of increased hydrothermal and seismic activities that occurred between September and December 2009. This work involves the use of the coefficient of determination (R 2) on vertical temperature profiles in order to identify changes in conductive versus convec-tive heat transfer modality. The increase in convective heat transfer can be related to the disruption of the hydrothermal system due to its pressurization and/or variation of ground permeability between the hydrothermal system and the surface. While raw temperature data do not evidence any significant variation during the period investigated and the classic temperature gradient is highly influenced by seasonal variations, the fluctuation of R 2 displayed striking spikes that coincided with the seismic swarm inside the volcanic edifice. Such a low-cost device associated with easy real-time data processing could constitute a very promising, yet deceptively simple, technique to monitor hydrothermal systems, in order to assess the hazard posed by high-energy eruptions for populations living close to active volcanoes.
Scientific Reports | 2018
Marceau Gresse; Jean Vandemeulebrouck; Svetlana Byrdina; Giovanni Chiodini; Philippe Roux; Antonio Pio Rinaldi; Marc Wathelet; Tullio Ricci; Jean Letort; Z. Petrillo; Paola Tuccimei; Carlo Lucchetti; Alessandra Sciarra
Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.
Geophysical Research Letters | 2006
D. Granieri; M. L. Carapezza; Giovanni Chiodini; R. Avino; Stefano Caliro; M. Ranaldi; Tullio Ricci; L. Tarchini