Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tung T. Nguyen is active.

Publication


Featured researches published by Tung T. Nguyen.


PLOS ONE | 2011

Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation.

Victoria A. Swiss; Tung T. Nguyen; Jason C. Dugas; Adiljan Ibrahim; Ben A. Barres; Ioannis P. Androulakis; Patrizia Casaccia

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes requires extensive changes in gene expression, which are partly mediated by post-translational modifications of nucleosomal histones. An essential modification for oligodendrocyte differentiation is the removal of acetyl groups from lysine residues which is catalyzed by histone deacetylases (HDACs). The transcriptional targets of HDAC activity within OPCs however, have remained elusive and have been identified in this study by interrogating the oligodendrocyte transcriptome. Using a novel algorithm that allows clustering of gene transcripts according to expression kinetics and expression levels, we defined major waves of co-regulated genes. The initial overall decrease in gene expression was followed by the up-regulation of genes involved in lipid metabolism and myelination. Functional annotation of the down-regulated gene clusters identified transcripts involved in cell cycle regulation, transcription, and RNA processing. To define whether these genes were the targets of HDAC activity, we cultured rat OPCs in the presence of trichostatin A (TSA), an HDAC inhibitor previously shown to inhibit oligodendrocyte differentiation. By overlaying the defined oligodendrocyte transcriptome with the list of ‘TSA sensitive’ genes, we determined that a high percentage of ‘TSA sensitive’ genes are part of a normal program of oligodendrocyte differentiation. TSA treatment increased the expression of genes whose down-regulation occurs very early after induction of OPC differentiation, but did not affect the expression of genes with a slower kinetic. Among the increased ‘TSA sensitive’ genes we detected several transcription factors including Id2, Egr1, and Sox11, whose down-regulation is critical for OPC differentiation. Thus, HDAC target genes include clusters of co-regulated genes involved in transcriptional repression. These results support a de-repression model of oligodendrocyte lineage progression that relies on the concurrent down-regulation of several inhibitors of differentiation.


Algorithms | 2009

Recent Advances in the Computational Discovery of Transcription Factor Binding Sites

Tung T. Nguyen; Ioannis P. Androulakis

The discovery of gene regulatory elements requires the synergism between computational and experimental techniques in order to reveal the underlying regulatory mechanisms that drive gene expression in response to external cues and signals. Utilizing the large amount of high-throughput experimental data, constantly growing in recent years, researchers have attempted to decipher the patterns which are hidden in the genomic sequences. These patterns, called motifs, are potential binding sites to transcription factors which are hypothesized to be the main regulators of the transcription process. Consequently, precise detection of these elements is required and thus a large number of computational approaches have been developed to support the de novo identification of TFBSs. Even though novel approaches are continuously proposed and almost all have reported some success in yeast and other lower organisms, in higher organisms the problem still remains a challenge. In this paper, we therefore review the recent developments in computational methods for transcription factor binding site prediction. We start with a brief review of the basic approaches for binding site representation and promoter identification, then discuss the techniques to locate physical TFBSs, identify functional binding sites using orthologous information, and infer functional TFBSs within some context defined by additional prior knowledge. Finally, we briefly explore the opportunities for expanding these approaches towards the computational identification of transcriptional regulatory networks.


PLOS ONE | 2011

Computational Identification of Transcriptional Regulators in Human Endotoxemia

Tung T. Nguyen; Panagiota T. Foteinou; Steven E. Calvano; Stephen F. Lowry; Ioannis P. Androulakis

One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes.


PLOS ONE | 2013

An agent-based model of cellular dynamics and circadian variability in human endotoxemia.

Tung T. Nguyen; Steve E. Calvano; Stephen F. Lowry; Ioannis P. Androulakis

As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.


BMC Bioinformatics | 2014

Bioinformatics analysis of transcriptional regulation of circadian genes in rat liver

Tung T. Nguyen; John S. Mattick; Qian Yang; Mehmet A. Orman; Marianthi G. Ierapetritou; Francois Berthiaume; Ioannis P. Androulakis

BackgroundThe circadian clock is a critical regulator of biological functions controlling behavioral, physiological and biochemical processes. Because the liver is the primary regulator of metabolites within the mammalian body and the disruption of circadian rhythms in liver is associated with severe illness, circadian regulators would play a strong role in maintaining liver function. However, the regulatory structure that governs circadian dynamics within the liver at a transcriptional level remains unknown. To explore this aspect, we analyzed hepatic transcriptional dynamics in Sprague-Dawley rats over a period of 24 hours to assess the genome-wide responses.ResultsUsing an unsupervised consensus clustering method, we identified four major gene expression clusters, corresponding to central carbon and nitrogen metabolism, membrane integrity, immune function, and DNA repair, all of which have dynamics which suggest regulation in a circadian manner. With the assumption that transcription factors (TFs) that are differentially expressed and contain CLOCK:BMAL1 binding sites on their proximal promoters are likely to be clock-controlled TFs, we were able to use promoter analysis to putatively identify additional clock-controlled TFs besides PARF and RORA families. These TFs are both functionally and temporally related to the clusters they regulate. Furthermore, we also identified significant sets of clock TFs that are potentially transcriptional regulators of gene clusters.ConclusionsAll together, we were able to propose a regulatory structure for circadian regulation which represents alternative paths for circadian control of different functions within the liver. Our prediction has been affirmed by functional and temporal analyses which are able to extend for similar studies.


BMC Bioinformatics | 2010

Comparative analysis of acute and chronic corticosteroid pharmacogenomic effects in rat liver: Transcriptional dynamics and regulatory structures

Tung T. Nguyen; Richard R. Almon; Debra C. DuBois; William J. Jusko; Ioannis P. Androulakis

BackgroundComprehensively understanding corticosteroid pharmacogenomic effects is an essential step towards an insight into the underlying molecular mechanisms for both beneficial and detrimental clinical effects. Nevertheless, even in a single tissue different methods of corticosteroid administration can induce different patterns of expression and regulatory control structures. Therefore, rich in vivo datasets of pharmacological time-series with two dosing regimens sampled from rat liver are examined for temporal patterns of changes in gene expression and their regulatory commonalities.ResultsThe study addresses two issues, including (1) identifying significant transcriptional modules coupled with dynamic expression patterns and (2) predicting relevant common transcriptional controls to better understand the underlying mechanisms of corticosteroid adverse effects. Following the orientation of meta-analysis, an extended computational approach that explores the concept of agreement matrix from consensus clustering has been proposed with the aims of identifying gene clusters that share common expression patterns across multiple dosing regimens as well as handling challenges in the analysis of microarray data from heterogeneous sources, e.g. different platforms and time-grids in this study. Six significant transcriptional modules coupled with typical patterns of expression have been identified. Functional analysis reveals that virtually all enriched functions (gene ontologies, pathways) in these modules are shown to be related to metabolic processes, implying the importance of these modules in adverse effects under the administration of corticosteroids. Relevant putative transcriptional regulators (e.g. RXRF, FKHD, SP1F) are also predicted to provide another source of information towards better understanding the complexities of expression patterns and the underlying regulatory mechanisms of those modules.ConclusionsWe have proposed a framework to identify significant coexpressed clusters of genes across multiple conditions experimented from different microarray platforms, time-grids, and also tissues if applicable. Analysis on rich in vivo datasets of corticosteroid time-series yielded significant insights into the pharmacogenomic effects of corticosteroids, especially the relevance to metabolic side-effects. This has been illustrated through enriched metabolic functions in those transcriptional modules and the presence of GRE binding motifs in those enriched pathways, providing significant modules for further analysis on pharmacogenomic corticosteroid effects.


Gene regulation and systems biology | 2014

Tissue-Specific Gene Expression and Regulation in Liver and Muscle Following Chronic Corticosteroid Administration

Tung T. Nguyen; Richard R. Almon; Debra C. DuBois; Siddharth Sukumaran; William J. Jusko; Ioannis P. Androulakis

Although corticosteroids (CSs) affect gene expression in multiple tissues, the array of genes that are regulated by these catabolic steroids is diverse, highly tissue specific, and depends on their functions in the tissue. Liver has many important functions in performing and regulating diverse metabolic processes. Muscle, in addition to its mechanical role, is critical in maintaining systemic energy homeostasis and accounts for about 80% of insulin-directed glucose disposal. Consequently, a better understanding of CS pharmacogenomic effects in these tissues would provide valuable information regarding the tissue-specificity of transcriptional dynamics, and would provide insights into the underlying molecular mechanisms of action for both beneficial and detrimental effects. We performed an integrated analysis of transcriptional data from liver and muscle in response to methylprednisolone (MPL) infusion, which included clustering and functional annotation of clustered gene groups, promoter extraction and putative transcription factor (TF) identification, and finally, regulatory closeness (RC) identification. This analysis allowed the identification of critical transcriptional responses and CS-responsive functions in liver and muscle during chronic MPL administration, the prediction of putative transcriptional regulators relevant to transcriptional responses of CS-affected genes which are also potential secondary bio-signals altering expression levels of target-genes, and the exploration of the tissue-specificity and biological significance of gene expression patterns, CS-responsive functions, and transcriptional regulation. The analysis provided an integrated description of the genomic and functional effects of chronic MPL infusion in liver and muscle.


Frontiers in Pharmacology | 2017

Understanding Physiology in the Continuum: Integration of Information from Multiple -Omics Levels

Kubra Kamisoglu; Alison Acevedo; Richard R. Almon; Susette M. Coyle; Siobhan A. Corbett; Debra C. DuBois; Tung T. Nguyen; William J. Jusko; Ioannis P. Androulakis

In this paper, we discuss approaches for integrating biological information reflecting diverse physiologic levels. In particular, we explore statistical and model-based methods for integrating transcriptomic, proteomic and metabolomics data. Our case studies reflect responses to a systemic inflammatory stimulus and in response to an anti-inflammatory treatment. Our paper serves partly as a review of existing methods and partly as a means to demonstrate, using case studies related to human endotoxemia and response to methylprednisolone (MPL) treatment, how specific questions may require specific methods, thus emphasizing the non-uniqueness of the approaches. Finally, we explore novel ways for integrating -omics information with PKPD models, toward the development of more integrated pharmacology models.


bioinformatics and bioengineering | 2010

Dynamic Complexity of the Temporal Transcriptional Regulation Program in Human Endotoxemia

Tung T. Nguyen; Panagiota T. Foteinou; Ioannis P. Androulakis; Steve E. Calvano; Stephen F. Lowry

Human endotoxemia is a well-accepted surrogate model for studying the acute inflammatory responses. In order to discover the complex underlying dynamics, identifying biologically relevant transcriptional regulators as well as their putative regulatory interactions with target genes is an essential step. However, prediction of relevant transcriptional regulators in higher eukaryotes remains a challenge both in silico and in vivo. In this study, we analyzed gene expression data from human blood leukocytes to extract four significant patterns of highly coexpressed genes that capture the essence of inflammatory phases. Upon identification of these patterns, a number of inflammation-specific pathways are selected by evaluating the enrichment of the corresponding subsets. Subsequently, statistically significant cis-regulatory modules (CRMs) are selected and decomposed into a list of relevant transcription factors (34 TFs) which are further validated from prior experiments and computational studies in literature. Additionally, our analysis also allows for the construction of a putative dynamic representation of the transcriptional regulatory program, making it become a critical enabler for unraveling regulatory interactions which is an essential step towards a quantification of dynamic transcriptional regulatory networks.


Cytokine | 2011

Comparison of the cytokine and chemokine dynamics of the early inflammatory response in models of burn injury and infection

Mehmet A. Orman; Tung T. Nguyen; Marianthi G. Ierapetritou; Francois Berthiaume; Ioannis P. Androulakis

Collaboration


Dive into the Tung T. Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge