Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Turgay Tekinay is active.

Publication


Featured researches published by Turgay Tekinay.


Biotechnology and Bioengineering | 2012

Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii

Turgay Cakmak; Pinar Angun; Yunus Emre Demiray; Alper Devrim Ozkan; Zeynep Elibol; Turgay Tekinay

Biodiesel production from microalgae is a promising approach for energy production; however, high cost of its process limits the use of microalgal biodiesel. Increasing the levels of triacylglycerol (TAG) levels, which is used as a biodiesel feedstock, in microalgae has been achieved mainly by nitrogen starvation. In this study, we compared effects of sulfur (S) and nitrogen (N) starvation on TAG accumulation and related parameters in wild‐type Chlamydomonas reinhardtii CC‐124 mt(−) and CC‐125 mt(+) strains. Cell division was interrupted, protein and chlorophyll levels rapidly declined while cell volume, total neutral lipid, carotenoid, and carbohydrate content increased in response to nutrient starvation. Cytosolic lipid droplets in microalgae under nutrient starvation were monitored by three‐dimensional confocal laser imaging of live cells. Infrared spectroscopy results showed that relative TAG, oligosaccharide and polysaccharide levels increased rapidly in response to nutrient starvation, especially S starvation. Both strains exhibited similar levels of regulation responses under mineral deficiency, however, the degree of their responses were significantly different, which emphasizes the importance of mating type on the physiological response of algae. Neutral lipid, TAG, and carbohydrate levels reached their peak values following 4 days of N or S starvation. Therefore, 4 days of N or S starvation provides an excellent way of increasing TAG content. Although increase in these parameters was followed by a subsequent decline in N‐starved strains after 4 days, this decline was not observed in S‐starved ones, which shows that S starvation is a better way of increasing TAG production of C. reinhardtii than N starvation. Biotechnol. Bioeng. 2012; 109:1947–1957.


Journal of Agricultural and Food Chemistry | 2013

Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes

Fatma Kayaci; Ozgun C.O. Umu; Turgay Tekinay; Tamer Uyar

Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.


Organic Letters | 2014

Designing an Intracellular Fluorescent Probe for Glutathione: Two Modulation Sites for Selective Signal Transduction

Murat Işık; Ruslan Guliyev; Safacan Kolemen; Yigit Altay; Berna Senturk; Turgay Tekinay; Engin U. Akkaya

A selective probe for glutathione was designed and synthesized. The design incorporates spatial and photophysical constraints for the maximal emission signal. Thus, pHs, as well as the intracellular thiol concentrations, determine the emission signal intensity through a tight control of charge-transfer and PeT processes. The probe works satisfactorily inside the human breast adenocarcinoma cells, highlighting GSH distribution in the cytosol.


Colloids and Surfaces B: Biointerfaces | 2014

Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes.

Asli Celebioglu; Ozgun C.O. Umu; Turgay Tekinay; Tamer Uyar

The electrospinning of nanofibers (NF) from cyclodextrin inclusion complexes (CD-IC) with an antibacterial agent (triclosan) was achieved without using any carrier polymeric matrix. Polymer-free triclosan/CD-IC NF were electrospun from highly concentrated (160% CD, w/w) aqueous triclosan/CD-IC suspension by using two types of chemically modified CD; hydroxypropyl-beta-cyclodextrin (HPβCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD). The morphological characterization of the electrospun triclosan/CD-IC NF by SEM elucidated that the triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF were bead-free having average fiber diameter of 520 ± 250 nm and 1,100 ± 660 nm, respectively. The presence of triclosan and the formation of triclosan/CD-IC within the fiber structure were confirmed by (1)H-NMR, FTIR, XRD, DSC, and TGA studies. The initial 1:1 molar ratio of the triclosan:CD was kept for triclosan/HPβCD-IC NF after the electrospinning and whereas 0.7:1 molar ratio was observed for triclosan/HPγCD-IC NF and some uncomplexed triclosan was detected suggesting that the complexation efficiency of triclosan with HPγCD was lower than that of HPβCD. The antibacterial properties of triclosan/CD-IC NF were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. It was observed that triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF showed better antibacterial activity against both bacteria compared to uncomplexed pure triclosan.


Colloids and Surfaces B: Biointerfaces | 2014

Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers.

Zeynep Aytac; Sema Yiyit Doğan; Turgay Tekinay; Tamer Uyar

Allyl isothiocyanate (AITC) is known as an efficient antibacterial agent but it has a very high volatility. Herein, AITC and AITC/β-cyclodextrin (CD)-inclusion complex (IC) incorporated in polyvinyl alcohol (PVA) nanofibers were produced via electrospinning. SEM images elucidated that incorporation of AITC and AITC/β-CD-IC into polymer matrix did not affect the bead-free fiber morphology of PVA nanofibers. (1)H-NMR and headspace GC-MS analyses revealed that very low amount of AITC was remained in PVA/AITC-NF because of the rapid evaporation of AITC during the electrospinning process. Nevertheless, much higher amount of AITC was preserved in the PVA/AITC/β-CD-IC-NF due to the CD inclusion complexation. The sustained release of AITC from nanofibers was evaluated at 30°C, 50°C and 75°C via headspace GC-MS. When compared to PVA/AITC-NF, PVA/AITC/β-CD-IC-NF has shown higher antibacterial activity against Escherichia coli and Staphylococcus aureus due to the presence of higher amount of AITC in this sample which was preserved by CD-IC.


Carbohydrate Polymers | 2014

One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers

Asli Celebioglu; Zeynep Aytac; Ozgun C.O. Umu; Aykutlu Dana; Turgay Tekinay; Tamer Uyar

One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.


Biomacromolecules | 2011

Slow Release and Delivery of Antisense Oligonucleotide Drug by Self-Assembled Peptide Amphiphile Nanofibers

Selma Bulut; Turan S. Erkal; Sila Toksoz; Ayse B. Tekinay; Turgay Tekinay; Mustafa O. Guler

Antisense oligonucleotides provide a promising therapeutic approach for several disorders including cancer. Chemical stability, controlled release, and intracellular delivery are crucial factors determining their efficacy. Gels composed of nanofibrous peptide network have been previously suggested as carriers for controlled delivery of drugs to improve stability and to provide controlled release, but have not been used for oligonucleotide delivery. In this work, a self-assembled peptide nanofibrous system is formed by mixing a cationic peptide amphiphile (PA) with Bcl-2 antisense oligodeoxynucleotide (ODN), G3139, through electrostatic interactions. The self-assembly of PA-ODN gel was characterized by circular dichroism, rheology, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM images revealed establishment of the nanofibrous PA-ODN network. Due to the electrostatic interactions between PA and ODN, ODN release can be controlled by changing PA and ODN concentrations in the PA-ODN gel. Cellular delivery of the ODN by PA-ODN nanofiber complex was observed by using fluorescently labeled ODN molecule. Cells incubated with PA-ODN complex had enhanced cellular uptake compared to cells incubated with naked ODN. Furthermore, Bcl-2 mRNA amounts were lower in MCF-7 human breast cancer cells in the presence of PA-ODN complex compared to naked ODN and mismatch ODN evidenced by quantitative RT-PCR studies. These results suggest that PA molecules can control ODN release, enhance cellular uptake and present a novel efficient approach for gene therapy studies and oligonucleotide based drug delivery.


Scientific Reports | 2013

Label-Free Nanometer-Resolution Imaging of Biological Architectures through Surface Enhanced Raman Scattering

Sencer Ayas; Goksu Cinar; Alper Devrim Ozkan; Zeliha Soran; Oner Ekiz; Deniz Kocaay; Aysel Tomak; Pelin Toren; Yasin Kaya; Ilknur Tunc; Hadi M. Zareie; Turgay Tekinay; Ayse B. Tekinay; Mustafa O. Guler; Aykutlu Dana

Label free imaging of the chemical environment of biological specimens would readily bridge the supramolecular and the cellular scales, if a chemical fingerprint technique such as Raman scattering can be coupled with super resolution imaging. We demonstrate the possibility of label-free super-resolution Raman imaging, by applying stochastic reconstruction to temporal fluctuations of the surface enhanced Raman scattering (SERS) signal which originate from biomolecular layers on large-area plasmonic surfaces with a high and uniform hot-spot density (>1011/cm2, 20 to 35 nm spacing). A resolution of 20 nm is demonstrated in reconstructed images of self-assembled peptide network and fibrilated lamellipodia of cardiomyocytes. Blink rate density is observed to be proportional to the excitation intensity and at high excitation densities (>10 kW/cm2) blinking is accompanied by molecular breakdown. However, at low powers, simultaneous Raman measurements show that SERS can provide sufficient blink rates required for image reconstruction without completely damaging the chemical structure.


Food Chemistry | 2017

Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging

Zeynep Aytac; Semran İpek; Engin Durgun; Turgay Tekinay; Tamer Uyar

Thymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.


RSC Advances | 2014

Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment

Nalan Oya San; Asli Celebioglu; Yasin Tümtaş; Tamer Uyar; Turgay Tekinay

In our study, an electrospun cellulose acetate nanofibrous web (CA-NFW) was found to be quite effective in immobilizing bacterial cells. Here, decolorization of methylene blue (MB) dye in aqueous medium was achieved by using three types of bacteria (Aeromonas eucrenophila, Clavibacter michiganensis and Pseudomonas aeruginosa) immobilized on the CA-NFW. The decolorization time (0–48 h) and different MB dye concentrations (20–500 mg L−1) were studied to elucidate the maximum MB dye removal by the bacteria immobilized CA-NFWs. The effective dye decolorization was achieved within 24 hours and MB dye removal was ∼95%. Interestingly, MB dye decolorization performance of bacteria immobilized CA-NFWs was quite close to that of free bacteria. We have also tested the reusability of bacteria immobilized NFWs after four cycles and ∼45% of the dye decolorization capacity was obtained at the end of the 4th cycle. These results are quite promising and therefore suggest that bacteria immobilized electrospun NFWs could be quite applicable for the decolorization of dyes in wastewater due to their versatility and reusability.

Collaboration


Dive into the Turgay Tekinay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge