Tyler R. Kartzinel
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tyler R. Kartzinel.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Tyler R. Kartzinel; Patricia A. Chen; Tyler C. Coverdale; David L. Erickson; W. John Kress; Maria L. Kuzmina; Daniel I. Rubenstein; Wei Wang; Robert M. Pringle
Significance Theory holds that sympatric large mammalian herbivores (LMH) must partition food resources to coexist, and traditional frameworks categorize LMH along a spectrum from grass-eating grazers to non–grass-eating browsers. Yet it has never been clear how finely LMH partition the enormous species diversity subsumed within these two broad plant types. By sequencing plant DNA from LMH fecal samples, we analyzed the diets of an LMH assemblage in Kenya. Diet composition was similar within species and strongly divergent across species, irrespective of feeding guild: Grazers ate similar total amounts of grass but different suites of grass species. These results suggest that species-specific plant traits may be key to understanding the dietary differences thought to underpin LMH diversity. Niche partitioning facilitates species coexistence in a world of limited resources, thereby enriching biodiversity. For decades, biologists have sought to understand how diverse assemblages of large mammalian herbivores (LMH) partition food resources. Several complementary mechanisms have been identified, including differential consumption of grasses versus nongrasses and spatiotemporal stratification in use of different parts of the same plant. However, the extent to which LMH partition food-plant species is largely unknown because comprehensive species-level identification is prohibitively difficult with traditional methods. We used DNA metabarcoding to quantify diet breadth, composition, and overlap for seven abundant LMH species (six wild, one domestic) in semiarid African savanna. These species ranged from almost-exclusive grazers to almost-exclusive browsers: Grass consumption inferred from mean sequence relative read abundance (RRA) ranged from >99% (plains zebra) to <1% (dik-dik). Grass RRA was highly correlated with isotopic estimates of % grass consumption, indicating that RRA conveys reliable quantitative information about consumption. Dietary overlap was greatest between species that were similar in body size and proportional grass consumption. Nonetheless, diet composition differed between all species—even pairs of grazers matched in size, digestive physiology, and location—and dietary similarity was sometimes greater across grazing and browsing guilds than within them. Such taxonomically fine-grained diet partitioning suggests that coarse trophic categorizations may generate misleading conclusions about competition and coexistence in LMH assemblages, and that LMH diversity may be more tightly linked to plant diversity than is currently recognized.
Molecular Ecology | 2013
Tyler R. Kartzinel; Dorset W. Trapnell; Richard P. Shefferson
Symbiotic interactions are common in nature. In dynamic or degraded environments, the ability to associate with multiple partners (i.e. broad specificity) may enable species to persist through fluctuations in the availability of any particular partner. Understanding how species interactions vary across landscapes is necessary to anticipate direct and indirect consequences of environmental degradation on species conservation. We asked whether mycorrhizal symbiosis by populations of a rare epiphytic orchid (Epidendrum firmum) is related to geographic or environmental heterogeneity. The latter would suggest that interactions are governed by environmental conditions rather than historic isolation of populations and/or mycorrhizal fungi. We used DNA‐based methods to identify mycorrhizal fungi from eleven E. firmum populations in Costa Rica. We used molecular and phylogenetic analyses to compare associations. Epidendrum firmum exhibited broad specificity, associating with diverse mycorrhizal fungi, including six Tulasnellaceae molecular operational taxonomic units (MOTUs), five Sebacinales MOTUs and others. Notably, diverse mycorrhizal symbioses formed in disturbed pasture and roadside habitats. Mycorrhizal fungi exhibited significant similarity within populations (spatial and phylogenetic autocorrelation) and significant differences among populations (phylogenetic community dissimilarity). However, mycorrhizal symbioses were not significantly associated with biogeographic or environmental features. Such unexpected heterogeneity among populations may result from complex combinations of fine‐scale environmental factors and macro‐evolutionary patterns of change in mycorrhizal specificity. Thus, E. firmum exhibits broad specificity and the potential for opportunistic associations with diverse fungi. We suggest that these characteristics could confer symbiotic assurance when mycorrhizal fungi are stochastically available, which may be crucial in dynamic or disturbed habitats such as tropical forest canopies.
Molecular Ecology | 2013
Tyler R. Kartzinel; Richard P. Shefferson; Dorset W. Trapnell
Populations of many species are isolated within narrow elevation bands of Neotropical mountain habitat, and how well dispersal maintains genetic connectivity is unknown. We asked whether genetic structure of an epiphytic orchid, Epidendrum firmum, corresponds to gaps between Costa Rican mountain ranges, and how these gaps influence pollen and seed flow. We predicted that significant genetic structure exists among mountain ranges due to different colonization histories and limited gene flow. Furthermore, we predicted that pollen movement contributes more to gene flow than seeds because seeds are released into strong winds perpendicular to the narrow northwest–southeast species distribution, while the likely pollinators are strong fliers. Individuals from 12 populations and three mountain ranges were genotyped with nuclear microsatellites (nDNA) and chloroplast sequences (cpDNA). Genetic diversity was high for both markers, while nDNA genetic structure was low (FSTn = 0.020) and cpDNA structure was moderate (FSTc = 0.443). Significant cpDNA barriers occurred within and among mountain ranges, but nDNA barriers were not significant after accounting for geographic distance. Consistent with these contrasting patterns of genetic structure, pollen contributes substantially more to gene flow among populations than seed (mp/ms = 46). Pollinators mediated extensive gene flow, eroding nDNA colonization footprints, while seed flow was comparatively limited, possibly due to directional prevailing winds across linearly distributed populations. Dispersal traits alone may not accurately inform predictions about gene flow or genetic structure, supporting the need for research into the potentially crucial role of pollinators and landscape context in gene flow among isolated populations.
Molecular Ecology | 2013
Dorset W. Trapnell; J. L. Hamrick; Caitlin D. A. Ishibashi; Tyler R. Kartzinel
Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epiphytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean r = 0.166) and significant but lower relatedness among populations within a pasture (mean r = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids.
Ecology Letters | 2017
Adam F. A. Pellegrini; William R. L. Anderegg; C. E. Timothy Paine; William A. Hoffmann; Tyler R. Kartzinel; Sam Rabin; Douglas Sheil; Augusto C. Franco; Stephen W. Pacala
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.
Molecular Ecology Resources | 2015
Tyler R. Kartzinel; Robert M. Pringle
Understanding community assembly and population dynamics frequently requires detailed knowledge of food web structure. For many consumers, obtaining precise information about diet composition has traditionally required sacrificing animals or other highly invasive procedures, generating tension between maintaining intact study populations and knowing what they eat. We developed 16S mitochondrial DNA sequencing methods to identify arthropods in the diets of generalist vertebrate predators without requiring a blocking primer. We demonstrate the utility of these methods for a common Caribbean lizard that has been intensively studied in the context of small island food webs: Anolis sagrei (a semi‐arboreal ‘trunk‐ground’ anole ecomorph). Novel PCR primers were identified in silico and tested in vitro. Illumina sequencing successfully characterized the arthropod component of 168 faecal DNA samples collected during three field trips spanning 12 months, revealing 217 molecular operational taxonomic units (mOTUs) from at least nine arthropod orders (including Araneae, Blattodea, Coleoptera, Hemiptera, Hymenoptera, Isoptera, Lepidoptera and Orthoptera). Three mOTUs (one beetle, one cockroach and one ant) were particularly frequent, occurring in ≥50% of samples, but the majority of mOTUs were infrequent (180, or 83%, occurred in ≤5% of samples). Species accumulation curves showed that dietary richness and composition were similar between size‐dimorphic sexes; however, female lizards had greater per‐sample dietary richness than males. Overall diet composition (but not richness) was significantly different across seasons, and we found more pronounced interindividual variation in December than in May. These methods will be generally useful in characterizing the diets of diverse insectivorous vertebrates.
Ecology | 2014
Tyler R. Kartzinel; Jacob R. Goheen; Grace K. Charles; Elyse DeFranco; Janet E. Maclean; Tobias O. Otieno; Todd M. Palmer; Robert M. Pringle
Assessing the direct and indirect consequences of nonrandom species removal within guilds of strongly interacting species, such as large mammalian herbivores, is an important goal in basic and applied ecology. The ecological impacts of such perturbations are often contingent on abiotic conditions, which have hindered efforts to generalize the results of field experiments. Thus, there is a need for experiments that selectively remove different species from ecologically important guilds and that are replicated across environmental gradients. In 2008, we constructed a series of size-selective large-herbivore exclosures across a natural rainfall gradient in semi-arid Kenyan savanna. This experiment (“UHURU”, for ungulate herbivory under rainfall uncertainty) aims to (a) characterize the effects of successively removing the largest size classes of herbivores from the system and (b) evaluate how the direction and magnitude of these effects are shaped by variation in precipitation regimes. UHURU consists of thre...
American Journal of Botany | 2012
Tyler R. Kartzinel; Dorset W. Trapnell; Travis C. Glenn
PREMISE OF THE STUDY Ten microsatellite loci were isolated and characterized for the neotropical epiphytic orchid Epidendrum firmum to examine levels of genetic diversity and genetic structure at multiple spatial scales. METHODS AND RESULTS We screened loci in 12-25 individuals from each of two populations in Costa Rica and identified 10 polymorphic loci. The number of alleles per locus ranged from one to 15 while observed heterozygosity for polymorphic loci ranged from 0.360 to 0.960. CONCLUSIONS Primers for these informative genetic markers will be useful for quantifying genetic diversity, spatial genetic structure, and gene flow in E. firmum.
Molecular Ecology | 2018
Bruce E. Deagle; Austen C. Thomas; Julie C. McInnes; Laurence J. Clarke; Eero J. Vesterinen; Elizabeth L. Clare; Tyler R. Kartzinel; J. Paige Eveson
Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumers diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi‐quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa‐specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low‐level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population‐level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research.
Frontiers in Immunology | 2018
Sarah A. Budischak; Christina Hansen; Quentin Caudron; Romain Garnier; Tyler R. Kartzinel; István Pelczer; Clayton E. Cressler; Anieke van Leeuwen; Andrea L. Graham
Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs.