Tyrone Ridgway
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tyrone Ridgway.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Eugenia M. Sampayo; Tyrone Ridgway; Pim Bongaerts; Ove Hoegh-Guldberg
Coral bleaching has been identified as one of the major contributors to coral reef decline, and the occurrence of different symbionts determined by broad genetic groupings (clades A–H) is commonly used to explain thermal responses of reef-building corals. By using Stylophora pistillata as a model, we monitored individual tagged colonies in situ over a two-year period and show that fine level genetic variability within clade C is correlated to differences in bleaching susceptibility. Based on denaturing gradient gel electrophoresis of the internal transcribed spacer region 2, visual bleaching assessments, symbiont densities, host protein, and pulse amplitude modulated fluorometry, we show that subcladal types C78 and C8/a are more thermally tolerant than C79 and C35/a, which suffered significant bleaching and postbleaching mortality. Although additional symbiont types were detected during bleaching in colonies harboring types C79 and C35/a, all colonies reverted back to their original symbionts postbleaching. Most importantly, the data propose that the differential mortality of hosts harboring thermally sensitive versus resistant symbionts rather than symbiont shuffling/switching within a single host is responsible for the observed symbiont composition changes of coral communities after bleaching. This study therefore highlights that the use of broad cladal designations may not be suitable to describe differences in bleaching susceptibility, and that differential mortality results in a loss of both symbiont and host genetic diversity and therefore represents an important mechanism in explaining how coral reef communities may respond to changing conditions.
PLOS ONE | 2010
Pim Bongaerts; Cynthia Riginos; Tyrone Ridgway; Eugenia M. Sampayo; Madeleine J. H. van Oppen; Norbert Englebert; Francisca Vermeulen; Ove Hoegh-Guldberg
Background Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection. Methodology/Principal Findings Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a ∼30 m depth range) at three locations on the Great Barrier Reef (n = 336). The populations were assessed for genetic structure using a combination of mitochondrial (putative control region) and nuclear (three microsatellites) markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium). Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location. Conclusions/Significance This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.
PLOS ONE | 2010
E. Charlotte E. Kvennefors; Eugenia M. Sampayo; Tyrone Ridgway; Andrew C. Barnes; Ove Hoegh-Guldberg
Background Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. Methodology/Principal Findings Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. Conclusions/Significance This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.
PLOS ONE | 2012
James A. Y. Moore; Lynda M. Bellchambers; Martial Depczynski; Richard D. Evans; Scott N. Evans; Stuart N. Field; Kim Friedman; James P. Gilmour; Thomas H. Holmes; Rachael Middlebrook; Ben Radford; Tyrone Ridgway; George Shedrawi; Heather Taylor; Damian P. Thomson; Shaun K. Wilson
Background Globally, coral bleaching has been responsible for a significant decline in both coral cover and diversity over the past two decades. During the summer of 2010–11, anomalous large-scale ocean warming induced unprecedented levels of coral bleaching accompanied by substantial storminess across more than 12° of latitude and 1200 kilometers of coastline in Western Australia (WA). Methodology/Principal Findings Extreme La-Niña conditions caused extensive warming of waters and drove considerable storminess and cyclonic activity across WA from October 2010 to May 2011. Satellite-derived sea surface temperature measurements recorded anomalies of up to 5°C above long-term averages. Benthic surveys quantified the extent of bleaching at 10 locations across four regions from tropical to temperate waters. Bleaching was recorded in all locations across regions and ranged between 17% (±5.5) in the temperate Perth region, to 95% (±3.5) in the Exmouth Gulf of the tropical Ningaloo region. Coincident with high levels of bleaching, three cyclones passed in close proximity to study locations around the time of peak temperatures. Follow-up surveys revealed spatial heterogeneity in coral cover change with four of ten locations recording significant loss of coral cover. Relative decreases ranged between 22%–83.9% of total coral cover, with the greatest losses in the Exmouth Gulf. Conclusions/Significance The anomalous thermal stress of 2010–11 induced mass bleaching of corals along central and southern WA coral reefs. Significant coral bleaching was observed at multiple locations across the tropical-temperate divide spanning more than 1200 km of coastline. Resultant spatially patchy loss of coral cover under widespread and high levels of bleaching and cyclonic activity, suggests a degree of resilience for WA coral communities. However, the spatial extent of bleaching casts some doubt over hypotheses suggesting that future impacts to coral reefs under forecast warming regimes may in part be mitigated by southern thermal refugia.
BMC Genomics | 2013
Camila Granados-Cifuentes; Anthony J. Bellantuono; Tyrone Ridgway; Ove Hoegh-Guldberg; Mauricio Rodriguez-Lanetty
BackgroundEcosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act.ResultsWe acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers.ConclusionOur results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
Biodiversity and Conservation | 2005
Tyrone Ridgway
Understanding genetic variability and gene flow between populations of scleractinian corals separated by one to several hundred kilometers is crucially important as we head into a century of climate change in which an understanding of the connectivity of populations is a critically important question in management. Genetic methods that directly use molecular variance in the DNA should offer greater precision in detecting differences among individuals and populations than the more traditional allozyme electrophoresis. However, this paper highlights the point that the limited number of DNA markers that have been identified for scleractinian coral genetic studies do not necessarily offer greater precision than that offered by allozymes. In fact, at present allozyme electrophoresis yields greater information than the eight different DNA markers used in this study. Given the relative ease of use of allozymes and the wealth of comparable data sets from numerous previously published studies, allozyme electrophoresis should not be dismissed for population structure and connectivity studies on coral reefs. While continued effort should be placed into searching for new DNA markers, until a more sensitive DNA marker becomes available for scleractinian corals, allozyme electrophoresis remains a powerful and relevant technique for understanding the connectivity of coral population studies.
Scientific Reports | 2016
Eugenia M. Sampayo; Tyrone Ridgway; Lorenzo Franceschinis; George Roff; Ove Hoegh-Guldberg; Sophie Dove
As climate change progresses, understanding the long-term response of corals and their endosymbionts (Symbiodinium) to prolonged environmental change is of immediate importance. Here, a total of 1152 fragments from 72 colonies of three common coral species (Stylophora pistillata, Pocillopora damicornis, Seriatopora hystrix) underwent a 32-month reciprocal depth transplantation. Genetic analysis showed that while S. hystrix maintained its generalist symbiont, some S. pistillata and P. damicornis underwent temporary changes in resident symbionts immediately after stress (transplantation; natural bleaching). These temporary changes were phylogenetically constrained to ‘host-compatible’ symbionts only and reversion to original symbionts occurred within 7 to 12 months, indicating long-term fidelity and stability of adult symbioses. Measurements of symbiont photo-physiology (dark adapted yield, pressure over photosystem II) and coral health (host protein, bleaching status, mortality) indicated a broad acclimatory capacity. However, this came at an apparent energetic expense as disproportionate mortality amongst symbioses that persisted outside their distribution range was observed following a natural bleaching event. As environmental changes due to climate change become more continuous in nature, sub-lethal effects linked to the existence near tolerance range limits coupled with the inability of adult coral colonies to change resident symbionts makes corals particularly susceptible to additional environmental fluctuations or stress events and reduces the resilience of coral populations.
Journal of Zoology | 2001
Savel R. Daniels; Barbara A. Stewart; Tyrone Ridgway; Wayne Florence
The taxonomic relationship between two toothed South African river crabs, Potamonautes warreni and P. unispinus, is unclear. The problem stems from the widespread variation in carapace dentition patterns amongst P. warreni individuals over its biogeographic range, where single toothed individuals may appear similar in carapace morphology to P. unispinus. Ten populations of P. warreni and 18 populations of P. unispinus were collected and the morphometric and genetic differentiation between the two taxa quantified. Patterns of morphometric and genetic variation were examined using multivariate statistics and protein gel electrophoresis, respectively. Principal component analyses of carapace characters showed that the two species are morphologically indistinguishable. However, discriminate functions analyses and additional statistical results corroborate the morphological distinction between the two taxa. Allozyme electrophoresis of 17 protein coding loci, indicated a close genetic similarity between the two species (I = 0.92). A fixed allelic difference at one locus (LT-2) and extensive genetic variability at another locus (PGM-1) indicate that two gene pools are present and that the two taxa are genetically isolated. Intraspecific genetic I values for both species were > 0.97 and indicated no apparent genetic structuring on a micro or macro-geographic scale. The variation in carapace dentition among P. warreni populations possesses no genetic basis and may possibly toe the product of ecogenesis. The value of dentition patterns in the systematics of river crabs is discussed. Dentition patterns among river crab species appear to be conserved and reliable as species specific diagnostic markers, but should ideally be used in combination with other morphological data sets and genetic evidence.
Coral Reefs | 2012
N. Kongjandtre; Tyrone Ridgway; Lyn G. Cook; Thomas Huelsken; Ann F. Budd; Ove Hoegh-Guldberg
While Faviidae is a widely and uniformly distributed coral family throughout the Indo-Pacific, the extensive phenotypic plasticity of colony surface and corallite features often confounds the use of macromorphological characters in species identification, and contributes to conflict between traditional classification and molecular analyses of the group. Recent advances in morphological and molecular techniques now provide a suite of methods to re-address coral taxonomy in complex groups, such as that represented by the Faviidae. This study combines morphologic measurements including “3D coordinates landmarks” data with phylogenetic assessments of nuclear (ITS) and mitochondrial (COI-trnM) DNA to assess species boundaries in nine species of Faviidae with para-septothecal walls from Thailand. Strong concordance was found between morphological features and a priori groupings based on both morphospecies and genetically defined groups (ITS and COI-trnM). Favia truncatus was the most well-defined species based on morphological analyses, and it was also shown to be monophyletic using phylogenetic analyses. Besides F. truncatus, the only other species that was found to be monophyletic in analyses of both genes was F. cf. helianthoides, but its skeletal morphology overlapped with the F. favus species complex (comprised of F. favus, F. speciosa, F. matthaii and F. rotumana). Although not genetically monophyletic, the F. favus species complex and F. pallida were fairly well delineated morphologically. Morphospecies within the F. favus species complex are therefore possibly a result of genetic drift and/or stable polymorphisms driven by divergent selection. These results represent a first step toward a taxonomic revision of the Indo-Pacific Favia, which will integrate morphological methods with the study of type material, genetic information, reproductive data, and tests of phenotypic plasticity—given that multiple lines of evidence are needed to resolve ambiguous species and assign species names.
Coral Reefs | 2010
Pim Bongaerts; Tyrone Ridgway; Eugenia M. Sampayo; Ove Hoegh-Guldberg
Collaboration
Dive into the Tyrone Ridgway's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs