Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugenia M. Sampayo is active.

Publication


Featured researches published by Eugenia M. Sampayo.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type

Eugenia M. Sampayo; Tyrone Ridgway; Pim Bongaerts; Ove Hoegh-Guldberg

Coral bleaching has been identified as one of the major contributors to coral reef decline, and the occurrence of different symbionts determined by broad genetic groupings (clades A–H) is commonly used to explain thermal responses of reef-building corals. By using Stylophora pistillata as a model, we monitored individual tagged colonies in situ over a two-year period and show that fine level genetic variability within clade C is correlated to differences in bleaching susceptibility. Based on denaturing gradient gel electrophoresis of the internal transcribed spacer region 2, visual bleaching assessments, symbiont densities, host protein, and pulse amplitude modulated fluorometry, we show that subcladal types C78 and C8/a are more thermally tolerant than C79 and C35/a, which suffered significant bleaching and postbleaching mortality. Although additional symbiont types were detected during bleaching in colonies harboring types C79 and C35/a, all colonies reverted back to their original symbionts postbleaching. Most importantly, the data propose that the differential mortality of hosts harboring thermally sensitive versus resistant symbionts rather than symbiont shuffling/switching within a single host is responsible for the observed symbiont composition changes of coral communities after bleaching. This study therefore highlights that the use of broad cladal designations may not be suitable to describe differences in bleaching susceptibility, and that differential mortality results in a loss of both symbiont and host genetic diversity and therefore represents an important mechanism in explaining how coral reef communities may respond to changing conditions.


Molecular Ecology | 2009

Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium

Eugenia M. Sampayo; Sophie Dove; Todd C. LaJeunesse

The diversity of symbiotic dinoflagellates (Symbiodinium) in pocilloporid corals originating from various reef habitats surrounding Heron Island, southern Great Barrier Reef, was examined by targeting ribosomal, mitochondrial, and chloroplast genes using six methods that analyse for sequence differences. The ability of each of 13 genetic analyses to characterize eight ecologically distinct Symbiodinium spp. was dependent on the level of conservation of the gene region targeted and the technique used. Other than differences in resolution, phylogenetic reconstructions using nuclear and organelle gene sequences were complementary and when combined produced a well‐resolved phylogeny. Analysis of the ribosomal internal transcribed spacers using denaturing gradient gel electrophoresis fingerprinting in combination with sequencing of dominant bands provided a precise method for rapidly resolving and characterizing symbionts into ecologically and evolutionarily distinct units of diversity. Single‐stranded conformation polymorphisms of the nuclear ribosomal large subunit (D1/D2 domain) identified the same number of ecologically distinct Symbiodinium spp., but profiles were less distinctive. The repetitive sequencing of bacterially cloned ITS2 polymerase chain reaction amplifications generated numerous sequence variants that clustered together according to the symbiont under analysis. The phylogenetic relationships between these clusters show how intragenomic variation in the ribosomal array diverges among closely related eukaryotic genomes. The strong correlation between phylogenetically independent lineages with different ecological and physiological attributes establishes a clear basis for assigning species designations to members of the genus Symbiodinium.


Molecular Ecology | 2007

Niche partitioning of closely related symbiotic dinoflagellates.

Eugenia M. Sampayo; Lorenzo Franceschinis; Ove Hoegh-Guldberg; Sophie Dove

Reef‐building corals are fundamental to the most diverse marine ecosystems, yet a detailed understanding of the processes involved in the establishment, persistence and ecology of the coral–dinoflagellate association remains largely unknown. This study explores symbiont diversity in relation to habitat by employing a broad‐scale sampling regime using ITS2 and denaturing gradient gel electrophoresis. Samples from Pocillopora damicornis, Stylophora pistillata and Seriatopora hystrix all harboured host‐specific clade C symbiont types at Heron Island (Great Barrier Reef, Australia). While Ser. hystrix associated with a single symbiont profile along its entire depth distribution, both P. damicornis and Sty. pistillata associated with multiple symbiont profiles that showed a strong zonation with depth. It is shown that, with an increased sampling effort, previously identified ‘rare’ symbiont types within this group of host species are in fact environmental specialists. A multivariate approach was used to expand on the common distinction of symbionts by a single genetic identity. It shows merit in its capacity not only to include all the variability present within the marker region but also to reliably represent ecological diversification of symbionts. Furthermore, the cohesive species concept is explored to explain how niche partitioning may drive diversification of closely related symbiont lineages. This study provides thus evidence that closely related symbionts are ecologically distinct and fulfil their own niche within the ecosystem provided by the host and external environment.


PLOS ONE | 2010

Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium

Pim Bongaerts; Cynthia Riginos; Tyrone Ridgway; Eugenia M. Sampayo; Madeleine J. H. van Oppen; Norbert Englebert; Francisca Vermeulen; Ove Hoegh-Guldberg

Background Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection. Methodology/Principal Findings Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a ∼30 m depth range) at three locations on the Great Barrier Reef (n = 336). The populations were assessed for genetic structure using a combination of mitochondrial (putative control region) and nuclear (three microsatellites) markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium). Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location. Conclusions/Significance This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.


Microbial Ecology | 2010

The Relative Significance of Host–Habitat, Depth, and Geography on the Ecology, Endemism, and Speciation of Coral Endosymbionts in the Genus Symbiodinium

J. Christine Finney; Daniel T. Pettay; Eugenia M. Sampayo; Mark E. Warner; Hazel A. Oxenford; Todd C. LaJeunesse

Dinoflagellates in the genus Symbiodinium are among the most abundant and important group of eukaryotic microbes found in coral reef ecosystems. Recent analyses conducted on various host cnidarians indicated that Symbiodinium assemblages in the Caribbean Sea are genetically and ecologically diverse. In order to further characterize this diversity and identify processes important to its origins, samples from six orders of Cnidaria comprising 45 genera were collected from reef habitats around Barbados (eastern Caribbean) and from the Mesoamerican barrier reef off the coast of Belize (western Caribbean). Fingerprinting of the ribosomal internal transcribed spacer 2 identified 62 genetically different Symbiodinium. Additional analyses of clade B Symbiodinium using microsatellite flanker sequences unequivocally characterized divergent lineages, or “species,” within what was previously thought to be a single entity (B1 or B184). In contrast to the Indo-Pacific where host-generalist symbionts dominate many coral communities, partner specificity in the Caribbean is relatively high and is influenced little by the host’s apparent mode of symbiont acquisition. Habitat depth (ambient light) and geographic isolation appeared to influence the bathymetric zonation and regional distribution for most of the Symbiodinium spp. characterized. Approximately 80% of Symbiodinium types were endemic to either the eastern or western Caribbean and 40–50% were distributed to compatible hosts living in shallow, high-irradiance, or deep, low-irradiance environments. These ecologic, geographic, and phylogenetic patterns indicate that most of the present Symbiodinium diversity probably originated from adaptive radiations driven by ecological specialization in separate Caribbean regions during the Pliocene and Pleistocene periods.


PLOS ONE | 2010

Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

E. Charlotte E. Kvennefors; Eugenia M. Sampayo; Tyrone Ridgway; Andrew C. Barnes; Ove Hoegh-Guldberg

Background Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. Methodology/Principal Findings Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. Conclusions/Significance This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.


Microbial Ecology | 2012

Regulation of bacterial communities through antimicrobial activity by the coral holobiont

E. Charlotte E. Kvennefors; Eugenia M. Sampayo; Caroline Kerr; Genyess Vieira; George Roff; Andrew C. Barnes

Interactions between corals and associated bacteria and amongst these bacterial groups are likely to play a key role in coral health. However, the complexity of these interactions is poorly understood. We investigated the functional role of specific coral-associated bacteria in maintaining microbial communities on the coral Acropora millepora (Ehrenberg 1834) and the ability of coral mucus to support or inhibit bacterial growth. Culture-independent techniques were used to assess bacterial community structures whilst bacterial culture was employed to assess intra- and inter-specific antimicrobial activities of bacteria. Members of Pseudoalteromonas and ribotypes closely related to Vibrio coralliilyticus displayed potent antimicrobial activity against a range of other cultured isolates and grew readily on detached coral mucus. Although such bacterial ribotypes would be expected to have a competitive advantage, they were rare or absent on intact and healthy coral colonies growing in situ (analysed using denaturing gradient gel electrophoresis and 16S rRNA gene sequencing). The most abundant bacterial ribotypes found on healthy corals were Gammaproteobacteria, previously defined as type A coral associates. Our results indicate that this group of bacteria and specific members of the Alphaproteobacteria described here as ‘type B associates’ may be important functional groups for coral health. We suggest that bacterial communities on coral are kept in check by a combination of host-derived and microbial interactions and that the type A associates in particular may play a key role in maintaining stability of microbial communities on healthy coral colonies.


BMC Ecology | 2013

SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef

Linda Tonk; Pim Bongaerts; Eugenia M. Sampayo; Ove Hoegh-Guldberg

BackgroundThe algal endosymbionts (genus Symbiodinium) associated with scleractinian corals (and other reef invertebrates) have received a lot of research attention in the past decade, particularly as certain host-symbiont associations appear more affected by increasing seawater temperatures than others. With the rapid accumulation of information on the diversity of Symbiodinium, it is becoming increasingly difficult to compare newly acquired Symbiodinium data with existing data to detect patterns of host-symbiont specificity on broader spatial scales. The lack of a general consensus on the classification of Symbiodinium species coupled with the variety of different markers used to identify the genus Symbiodinium (ITS1, ITS2, LSU D1/D2, chloroplast 23S rDNA and psbA minicircle) further complicate direct comparison.DescriptionThe SymbioGBR database compiles all currently available Symbiodinium sequences and associated host information of data collected from the Great Barrier Reef into a single relational database that is accessible via a user-friendly, searchable web-based application (http://www.SymbioGBR.org). SymbioGBR allows users to query Symbiodinium types or sequences sourced from various genetic markers (e.g. ITS1, ITS2, LSU D1/D2 and chloroplast 23S) and invertebrate host species to explore their reported associations. In addition, as the database includes sequence information of multiple genetic markers, it allows cross-referencing between conventional (e.g. ITS2 region) and novel markers that exhibit low intragenomic variability (e.g. psbA region). Finally, the database is based on the collection details of individual specimens. Such host-symbiont associations can be assessed quantitatively and viewed in relation to their environmental and geographic context.ConclusionsThe SymbioGBR database provides a comprehensive overview of Symbiodinium diversity and host-associations on the Great Barrier Reef. It provides a quick, user-friendly means to compare newly acquired data on Symbiodinium (e.g. raw sequences or characterized Symbiodinium types) with previous data on the diversity of invertebrate host-symbiont associations on the GBR. The inclusion of psbAncr sequence information allows for validation of widely used ITS1/ITS2 markers and their ability to accurately identify relevant sequences. Most importantly, centralization of sequence information from multiple genetic markers will aid the classification of Symbiodinium species diversity and allow researchers to easily compare patterns of host-Symbiodinium associations.


Coral Reefs | 2010

Local endemicity and high diversity characterise high-latitude coral-Symbiodinium partnerships

Laura C. Wicks; Eugenia M. Sampayo; Jonathan P. A. Gardner; Simon K. Davy

Obligate symbiotic dinoflagellates (Symbiodinium) residing within the tissues of most reef invertebrates are important in determining the tolerance range of their host. Coral communities living at high latitudes experience wide fluctuations in environmental conditions and thus provide an ideal system to gain insights into the range within which the symbiotic relationship can be sustained. Further, understanding whether and how symbiont communities associated with high-latitude coral reefs are different from their tropical counterparts will provide clues to the potential of corals to cope with marginal or changing conditions. However, little is known of the host and symbiont partnerships at high latitudes. Symbiodinium diversity and specificity of high-latitude coral communities were explored using denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA at Lord Howe Island (31°S; Australia), and the Kermadec Islands (29°S; New Zealand). All but one host associated with clade C Symbiodinium, the exception being a soft coral (Capnella sp.) that contained Symbiodinium B1. Besides ‘host-generalist’ Symbiodinium types C1 and C3, approximately 72% of the Symbiodinium identified were novel C types, and zonation of symbionts in relation to environmental parameters such as depth and turbidity was evident in certain host species. The high-latitude Symbiodinium communities showed little overlap and relatively high diversity compared with communities sampled on the tropical Great Barrier Reef. Although host specificity was maintained in certain species, others shared symbionts and this potential reduction of fidelity at high-latitude locations may be the result of locally challenging and highly variable environmental conditions.


Caribbean Journal of Science | 2008

Coral reef fish and benthic community structure of Bonaire and Curaçao, Netherlands Antilles

Stuart A. Sandin; Eugenia M. Sampayo; Mark J. A. Vermeij

Abstract. Coral reefs throughout the Caribbean have suffered the effects of human activities, including overfishing, nutrient pollution, and global climate change. Yet despite systematic deterioration of reef health, there still exists appreciable variability of reef conditions across Caribbean sites. The mid-depth (20 m) fringing reefs of Bonaire and Curaçao, in the leeward Netherlands Antilles, remain healthier than reefs on many other Caribbean islands, supporting relatively high fish biomass and high coral cover. Approximately one half of the fish biomass is composed of planktivorous species, with the balance comprised of herbivorous and carnivorous species. Only a small fraction (<7%) of the fish biomass is composed of apex predators, predominantly due to the essential absence of sharks from these reefs. Coral cover across these islands averages 26.6%, with fleshy macroalgae and turf algae covering most of the remaining benthos. Coral cover was not correlated with the biomass of any fish groups, failing to provide a clear link between fish activities (e.g., herbivory) and the health and persistence of corals. However, there was a strong, positive correlation between macroalgal cover and herbivorous fish biomass. This result is in contrast to previously published reports and may identify a disparity between correlational studies conducted within islands (or nearby islands) versus studies comparing results from across islands. These data provide insights into the structure of reef communities in the southern Caribbean Sea.

Collaboration


Dive into the Eugenia M. Sampayo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyrone Ridgway

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Linda Tonk

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Todd C. LaJeunesse

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Pim Bongaerts

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Sophie Dove

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge