Ujjal Bhattacharjee
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ujjal Bhattacharjee.
ACS Nano | 2015
Feng Zhu; Long Men; Yijun Guo; Qiaochu Zhu; Ujjal Bhattacharjee; Peter M. Goodwin; Jacob W. Petrich; Emily A. Smith; Javier Vela
Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. This work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.
Journal of Physical Chemistry B | 2014
Ujjal Bhattacharjee; Christie L. Beck; Arthur H. Winter; Carson Wells; Jacob W. Petrich
Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.
Journal of the American Chemical Society | 2013
Patrick J. Hanway; Jiadan Xue; Ujjal Bhattacharjee; Maeia J. Milot; Zhu Ruixue; David Lee Phillips; Arthur H. Winter
Photolysis of protonated phenylhydroxylamine was studied using product analysis, trapping experiments, and laser flash photolysis experiments (UV-vis and TR(3) detection) ranging from the femtosecond to the microsecond time scale. We find that the excited state of the photoprecursor is followed by two species: a longer-lived transient (150 ns) that we assign to the phenoxy radical and a shorter-lived (3-20 ns) transient that we assign to the singlet phenyloxenium ion. Product studies from photolysis of this precursor show rearranged protonated o-/p-aminophenols and solvent water adducts (catechol, hydroquinone) and ammonium ion. The former products can be largely ascribed to radical recombination or ion recombination, while the latter are ascribed to solvent water addition to the phenyloxenium ion. The phenyloxenium ion is apparently too short-lived under these conditions to be trapped by external nucleophiles other than solvent, giving only trace amounts of o-/p-chloro adducts upon addition of chloride trap. Product studies upon thermolysis of this precursor give the same products as those generated from photolysis, with the difference being that the ortho adducts (o-aminophenol, hydroquinone) are formed in a higher ratio in comparison to the photolysis products.
Photochemistry and Photobiology | 2014
Aleem Syed; Michael David Lesoine; Ujjal Bhattacharjee; Jacob W. Petrich; Emily A. Smith
Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F‐actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a 10‐fold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel‐by‐pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal‐to‐noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40–400 nm spatial regime.
ACS Applied Materials & Interfaces | 2017
Moneim Elshobaki; Ryan S. Gebhardt; John A. Carr; William R. Lindemann; Wenjie Wang; Eric Grieser; Swaminathan Venkatesan; Evan C. Ngo; Ujjal Bhattacharjee; Joseph Strzalka; Zhang Jiang; Qiquan Qiao; Jacob W. Petrich; David Vaknin; Sumit Chaudhary
To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions-horizontal (H), tilted (T), and vertical (V)-relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment, we achieved favorable morphologies with efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10-4 ± 1.6 × 10-4 cm2 V-1 s-1 and (2) the power conversion efficiency (PCE) of conventional and inverted OPVs up to 2.58 ± 0.02% and 4.1 ± 0.40%, respectively. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.
Journal of Agricultural and Food Chemistry | 2016
Ujjal Bhattacharjee; Catherine Graham; Stefanie Czub; Sandor Dudas; Mark A. Rasmussen; Thomas A. Casey; Jacob W. Petrich
Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle. The distinct intensity difference of about 4-10-fold between the spectra of the BSE-positive and the BSE-negative (sham-inoculated and non-inoculated) eyes suggests the basis for a means of developing a rapid, noninvasive examination of BSE in particular and TSEs in general.
Journal of Agricultural and Food Chemistry | 2018
Ujjal Bhattacharjee; Danielle Jarashow; Thomas A. Casey; Jacob W. Petrich; Mark A. Rasmussen
Owing to its high ω-3 fatty acid content, milk from grass-fed dairy cows is becoming increasingly more attractive to consumers. Consequently, it is important to identify the origins of such products and to measure their content, at least relative to some standard. To date, chromatography has been the most extensively used technique. Sample preparation and cost, however, often reduce its widespread applicability. Here, we report the effectiveness of fluorescence spectroscopy for such quantification by measuring the amount of chlorophyll metabolites in the sample. Their content is significantly higher for milk from grass-fed cows compared to milk from grain/silage-fed cows. It is 0.11-0.13 μM in milk samples from grass-fed cows, whereas in milk from cows fed grain/silage rations, the concentration was 0.01-0.04 μM. In various organic milk samples, the chlorophyll metabolite concentration was in the range of 0.07-0.09 μM. In addition, we explored the mechanisms of photodegradation of milk. Riboflavin and chlorophyll metabolites act as photosensitizers in milk for type-I and type-II reactions, respectively. It was also observed that the presence of high levels of chlorophyll metabolites can synergistically degrade riboflavin, contributing to the degradation of milk quality.
ChemPhysChem | 2017
Ujjal Bhattacharjee; Daniel J. Freppon; Long Men; Javier Vela; Emily A. Smith; Jacob W. Petrich
The ability to produce large-scale, reversible structural changes in a variety of materials by photoexcitation of a wide variety of azobenzene derivatives has been recognized for almost two decades. Because photoexcitation of trans-azobenzene produces the cis-isomer in solution, it has generally been inferred that the macroscopic structural changes occurring in materials are also initiated by a similar large-amplitude trans-to-cis isomerization. This work provides the first demonstration that a trans-to-cis photoisomerization occurs in polycrystalline azobenzene, and is consistent with the previously hypothesized nature of the trigger in the photoactuated mechanisms of the materials in question. It is also demonstrated that under low irradiance, trans-to-cis isomerization occurs in the solid (not via a pre-melted phase); and the presence of the cis-isomer thus lowers the melting point of the sample, providing a liquid phase. A variety of experimental techniques were employed, including X-ray diffraction measurements of polycrystalline azobenzene during exposure to laser irradiation and fluorescence measurements of the solid sample. A practical consequence of this work is that it establishes trans-azobenzene as an easily obtainable and well-defined control for monitoring photoinduced structural changes in X-ray diffraction experiments, using easily accessible laser wavelengths.
Plant Journal | 2013
Martha Sainz; Carmen Pérez-Rontomé; Javier Ramos; José Mulet; Euan K. James; Ujjal Bhattacharjee; Jacob W. Petrich; Manuel Becana
Chemistry of Materials | 2016
Umar H. Hamdeh; Rainie D. Nelson; Bradley J. Ryan; Ujjal Bhattacharjee; Jacob W. Petrich; Matthew G. Panthani