Ujjal Kumar Nath
Sunchon National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ujjal Kumar Nath.
BMC Plant Biology | 2017
Md. Abdul Kayum; Jong-In Park; Ujjal Kumar Nath; Manosh Kumar Biswas; Hoy-Taek Kim; Ill-Sup Nou
BackgroundPlants contain a range of aquaporin (AQP) proteins, which act as transporter of water and nutrient molecules through living membranes. AQPs also participate in water uptake through the roots and contribute to water homeostasis in leaves.ResultsIn this study, we identified 59 AQP genes in the B. rapa database and Br135K microarray dataset. Phylogenetic analysis revealed four distinct subfamilies of AQP genes: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Microarray analysis showed that the majority of PIP subfamily genes had differential transcript abundance between two B. rapa inbred lines Chiifu and Kenshin that differ in their susceptibility to cold. In addition, all BrPIP genes showed organ-specific expression. Out of 22 genes, 12, 7 and 17 were up-regulated in response to cold, drought and salt stresses, respectively. In addition, 18 BrPIP genes were up-regulated under ABA treatment and 4 BrPIP genes were up-regulated upon F. oxysporum f. sp. conglutinans infection. Moreover, all BrPIP genes showed down-regulation under waterlogging stress, reflecting likely the inactivation of AQPs controlling symplastic water movement.ConclusionsThis study provides a comprehensive analysis of AQPs in B. rapa and details the expression of 22 members of the BrPIP subfamily. These results provide insight into stress-related biological functions of each PIP gene of the AQP family, which will promote B. rapa breeding programs.
Plant breeding and biotechnology | 2016
Md. Abdul Kayum; Hoy Taek Kim; Ujjal Kumar Nath; Jong-In Park; Kang Hee Kho; Yong Gu Cho; Ill Sup Nou
Global population is increasing day-by-day, simultaneously, crop production need to increase proportionately. Whereas, increase crop production being restricted due to abiotic and biotic stresses. Abiotic stresses are adversely affected crop growth and development, leading to crop loss globally and thereby causing huge amount of economic loss as well. Contrary, pathogens are attacked the plants imposing biotic stress and severely hampers the yield. Therefore, it is prime need to understand the molecular mechanism and genes involved to minimize the biotic and abiotic stresses for mitigating the Brassica vegetable crop losses. The stress responsive, pathogens related genes are involved in tolerance or resistance to stress in plants that are cross-talk with different types of stress components in signal transduction pathways. The plants have their own mechanism to overcome biotic and abiotic stresses to follow the abscisic acid (ABA)-dependent and ABA-independent pathways. Several transcription factors such as WRKY, Alfin-like, MYB, NAC, DREB, CBF are integrating to various stress signals and controlling the gene expression through networking with their related cis-elements. To develop stress tolerance and/or resistant crops plants, there is need to realize both of the plant and pathogenic disease development mechanisms. Therefore, this article is focused on (i) major and devastating stresses on vegetable crops, (ii) role of genes to overcome the stresses, and (iii) differential genes expressed under biotic and abiotic stresses in Brassica oleracea and B. rapa for getting insight of the mechanisms of development of resistance lines.
International Journal of Molecular Sciences | 2017
Khadiza Khatun; Arif Hasan Khan Robin; Jong-In Park; Ujjal Kumar Nath; Chang Kil Kim; Ki-Byung Lim; Ill Sup Nou; Mi-Young Chung
Growth regulating factors (GRFs) are plant-specific transcription factors that are involved in diverse biological and physiological processes, such as growth, development and stress and hormone responses. However, the roles of GRFs in vegetative and reproductive growth, development and stress responses in tomato (Solanum lycopersicum) have not been extensively explored. In this study, we characterized the 13 SlGRF genes. In silico analysis of protein motif organization, intron–exon distribution, and phylogenetic classification confirmed the presence of GRF proteins in tomato. The tissue-specific expression analysis revealed that most of the SlGRF genes were preferentially expressed in young and growing tissues such as flower buds and meristems, suggesting that SlGRFs are important during growth and development of these tissues. Some of the SlGRF genes were preferentially expressed in fruits at distinct developmental stages suggesting their involvement in fruit development and the ripening process. The strong and differential expression of different SlGRFs under NaCl, drought, heat, cold, abscisic acid (ABA), and jasmonic acid (JA) treatment, predict possible functions for these genes in stress responses in addition to their growth regulatory functions. Further, differential expression of SlGRF genes upon gibberellic acid (GA3) treatment indicates their probable function in flower development and stress responses through a gibberellic acid (GA)-mediated pathway. The results of this study provide a basis for further functional analysis and characterization of this important gene family in tomato.
Genes | 2018
Md. Abdul Kayum; Ujjal Kumar Nath; Jong-In Park; Manosh Kumar Biswas; Eung Choi; Jae-Young Song; Hoy-Taek Kim; Ill-Sup Nou
Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs.
BMC Genomics | 2017
Md. Abdul Kayum; Jong-In Park; Ujjal Kumar Nath; Gopal Saha; Manosh Kumar Biswas; Hoy-Taek Kim; Ill-Sup Nou
BackgroundProtein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them.ResultsWe have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1–1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5–2 gene for ABA stress, and BrPDI1–4, 6–1 and 9–2 were putative candidate genes for both cold and chilling injury stresses.ConclusionsOur findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses.
PLOS ONE | 2018
Kiwoung Yang; Ujjal Kumar Nath; Manosh Kumar Biswas; Abdul Kayum; Go-eun Yi; Jonghoon Lee; Tae-Jin Yang; Ill-Sup Nou
Plant mitochondrial genomes (mtDNAs) vary in sequence structure. We assembled the Brassica oleracea var. capitata mtDNA using a mean coverage depth of 25X whole genome sequencing (WGS) and confirmed the presence of eight contigs/fragments by BLASTZ using the previously reported KJ820683 and AP012988 mtDNA as reference. Assembly of the mtDNA sequence reads resulted in a circular structure of 219,975 bp. Our assembled mtDNA, NCBI acc. no. KU831325, contained 34 protein-coding genes, 3 rRNA genes, and 19 tRNA genes with similarity to the KJ820683 and AP012988 reference mtDNA. No large repeats were found in the KU831325 assembly. However, KU831325 showed differences in the arrangement of bases at different regions compared to the previously reported mtDNAs. In the reference mtDNAs KJ820683 and AP012988, contig/fragment number 4 is partitioned into two contigs/fragments, 4a and 4b. However, contig/fragment number 4 was a single contig/fragment with 29,661 bp in KU831325. PCR and qRT-PCR using flanking markers from separate parts of contig/fragment number 4 confirmed it to be a single contig/fragment. In addition, genome re-alignment of the plastid genome and mtDNAs supported the presence of heteroplasmy and reverse arrangement of the heteroplasmic blocks within the other mtDNAs compared to KU831325 that might be one of the causal factors for its diversity. Our results thus confirm the existence of different mtDNAs in diverse B. oleracea subspecies.
International Journal of Molecular Sciences | 2018
Mohammad Rashed Hossain; Hoy-Taek Kim; Ashokraj Shanmugam; Ujjal Kumar Nath; Gayatri Goswami; Jae-Young Song; Jong-In Park; Ill-Sup Nou
Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5, FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11, FaMYB9, FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7, FaF3H, FaCHI1, FaCHI3, and FaCHS, and among the late BGs, FaDFR4-3, FaLDOX, and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.
Genes | 2018
Delara Akhter; Ran Qin; Ujjal Kumar Nath; Md. Alamin; Xiaoli Jin; Chunhai Shi
Isolating and characterizing mutants with altered senescence phenotypes is one of the ways to understand the molecular basis of leaf aging. Using ethyl methane sulfonate mutagenesis, a new rice (Oryza sativa) mutant, brown midrib leaf (bml), was isolated from the indica cultivar ‘Zhenong34’. The bml mutants had brown midribs in their leaves and initiated senescence prematurely, at the onset of heading. The mutants had abnormal cells with degraded chloroplasts and contained less chlorophyll compared to the wild type (WT). The bml mutant showed excessive accumulation of reactive oxygen species (ROS), increased activities of superoxide dismutase, catalase, and malondialdehyde, upregulation of senescence-induced STAY-GREEN genes and senescence-related transcription factors, and down regulation of photosynthesis-related genes. The levels of abscisic acid (ABA) and jasmonic acid (JA) were increased in bml with the upregulation of some ABA and JA biosynthetic genes. In pathogen response, bml demonstrated higher resistance against Xanthomonas oryzae pv. oryzae and upregulation of four pathogenesis-related genes compared to the WT. A genetic study confirmed that the bml trait was caused by a single recessive nuclear gene (BML). A map-based cloning using insertion/deletion markers confirmed that BML was located in the 57.32kb interval between the L5IS7 and L5IS11 markers on the short arm of chromosome 5. A sequence analysis of the candidate region identified a 1 bp substitution (G to A) in the 5′-UTR (+98) of bml. BML is a candidate gene associated with leaf senescence, ROS regulation, and disease response, also involved in hormone signaling in rice. Therefore, this gene might be useful in marker-assisted backcrossing/gene editing to improve rice cultivars.
BMC Genomics | 2017
Khadiza Khatun; Ujjal Kumar Nath; Arif Hasan Khan Robin; Jong-In Park; Do-Jin Lee; Min-Bae Kim; Chang Kil Kim; Ki-Byung Lim; Ill Sup Nou; Mi-Young Chung
BackgroundZinc finger homeodomain proteins (ZHD) constitute a plant-specific transcription factor family with a conserved DNA binding homeodomain and a zinc finger motif. Members of the ZHD protein family play important roles in plant growth, development, and stress responses. Genome-wide characterization of ZHD genes has been carried out in several model plants, including Arabidopsis thaliana and Oryza sativa, but not yet in tomato (Solanum lycopersicum).ResultsIn this study, we performed the first comprehensive genome-wide characterization and expression profiling of the ZHD gene family in tomato (Solanum lycopersicum). We identified 22 SlZHD genes and classified them into six subfamilies based on phylogeny. The SlZHD genes were generally conserved in each subfamily, with minor variations in gene structure and motif distribution. The 22 SlZHD genes were distributed on six of the 12 tomato chromosomes, with segmental duplication detected in four genes. Analysis of Ka/Ks ratios revealed that the duplicated genes are under negative or purifying selection. Comprehensive expression analysis revealed that the SlZHD genes are widely expressed in various tissues, with most genes preferentially expressed in flower buds compared to other tissues. Moreover, many of the genes are responsive to abiotic stress and phytohormone treatment.ConclusionSystematic analysis revealed structural diversity among tomato ZHD proteins, which indicates the possibility for diverse roles of SlZHD genes in different developmental stages as well as in response to abiotic stresses. Our expression analysis of SlZHD genes in various tissues/organs and under various abiotic stress and phytohormone treatments sheds light on their functional divergence. Our findings represent a valuable resource for further analysis to explore the biological functions of tomato ZHD genes.
Plant Molecular Biology Reporter | 2018
Md. Abuyusuf; Ujjal Kumar Nath; Hoy-Taek Kim; Manosh Kumar Biswas; Jong-In Park; Ill-Sup Nou
Cabbage (Brassica oleracea var. capitata) is the most popular leafy vegetable; however, its quality as a vegetable depends on its growth stage. Premature bolting triggered by low temperatures leads to a reduction of yield and quality of cabbage. Late bolting is preferred by growers to increase market value, whereas early bolting plants are ideal for quality seed production. Herein, we reported a gene BolPrx.2 annotated as Q9FLC0 in the SwissPort, involved in bolting time variation in cabbage and designed molecular markers to characterize early- and late-bolting cabbage populations and lines. The BolPrx.2 gene encodes a peroxidase domain and has been identified as a candidate showed almost similar effect as the previously reported MADS-box domain-containing FLC genes for controlling bolting time. An insertion/deletion (InDel) variation in intron1 has been identified as a causal factor for variation between late- and early-bolting inbred lines. By using this InDel, we designed molecular markers for characterizing the bolting time variation and validated them with 141 F2 generation plants. These markers predicted about 84% of the variation within the population and commercial lines. Therefore, it could be a potential genetic tool to predict bolting time variation and support marker-assisted back crossing (MABC) programs for developing desired bolting types of cabbage cultivars.