Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulas Bagci is active.

Publication


Featured researches published by Ulas Bagci.


IEEE Transactions on Image Processing | 2012

Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models

Xinjian Chen; Jayaram K. Udupa; Ulas Bagci; Ying Zhuge; Jianhua Yao

In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF >; 94.3% and false positive volume fraction FPVF <; 0.2% can be achieved; 2) the initializa- tion performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.word- press.com/research/.


Computers in Biology and Medicine | 2014

A Review on Segmentation of Positron Emission Tomography Images

Brent Foster; Ulas Bagci; Awais Mansoor; Ziyue Xu; Daniel J. Mollura

Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results.


Medical Image Analysis | 2013

Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images.

Ulas Bagci; Jayaram K. Udupa; Neil Mendhiratta; Brent Foster; Ziyue Xu; Jianhua Yao; Xinjian Chen; Daniel J. Mollura

We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use.


Nature Communications | 2015

Evaluation of candidate vaccine approaches for MERS-CoV

Lingshu Wang; Wei Shi; M. Gordon Joyce; Kayvon Modjarrad; Yi Zhang; Kwanyee Leung; Christopher R. Lees; Tongqing Zhou; Hadi M. Yassine; Masaru Kanekiyo; Zhi Yong Yang; Xuejun Chen; Michelle M. Becker; Megan Culler Freeman; Leatrice Vogel; Joshua C. Johnson; Gene G. Olinger; John Paul Todd; Ulas Bagci; Jeffrey Solomon; Daniel J. Mollura; Lisa E. Hensley; Peter B. Jahrling; Mark R. Denison; Srinivas S. Rao; Kanta Subbarao; Peter D. Kwong; John R. Mascola; Wing Pui Kong; Barney S. Graham

The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development. Supplementary information The online version of this article (doi:10.1038/ncomms8712) contains supplementary material, which is available to authorized users.


IEEE Transactions on Medical Imaging | 2014

A Generic Approach to Pathological Lung Segmentation

Awais Mansoor; Ulas Bagci; Ziyue Xu; Brent Foster; Kenneth N. Olivier; Jason M. Elinoff; Jayaram K. Udupa; Daniel J. Mollura

In this study, we propose a novel pathological lung segmentation method that takes into account neighbor prior constraints and a novel pathology recognition system. Our proposed framework has two stages; during stage one, we adapted the fuzzy connectedness (FC) image segmentation algorithm to perform initial lung parenchyma extraction. In parallel, we estimate the lung volume using rib-cage information without explicitly delineating lungs. This rudimentary, but intelligent lung volume estimation system allows comparison of volume differences between rib cage and FC based lung volume measurements. Significant volume difference indicates the presence of pathology, which invokes the second stage of the proposed framework for the refinement of segmented lung. In stage two, texture-based features are utilized to detect abnormal imaging patterns (consolidations, ground glass, interstitial thickening, tree-inbud, honeycombing, nodules, and micro-nodules) that might have been missed during the first stage of the algorithm. This refinement stage is further completed by a novel neighboring anatomy-guided segmentation approach to include abnormalities with weak textures, and pleura regions. We evaluated the accuracy and efficiency of the proposed method on more than 400 CT scans with the presence of a wide spectrum of abnormalities. To our best of knowledge, this is the first study to evaluate all abnormal imaging patterns in a single segmentation framework. The quantitative results show that our pathological lung segmentation method improves on current standards because of its high sensitivity and specificity and may have considerable potential to enhance the performance of routine clinical tasks.


Computerized Medical Imaging and Graphics | 2012

Computer-assisted detection of infectious lung diseases: a review.

Ulas Bagci; Mike Bray; Jesus J. Caban; Jianhua Yao; Daniel J. Mollura

Respiratory tract infections are a leading cause of death and disability worldwide. Although radiology serves as a primary diagnostic method for assessing respiratory tract infections, visual analysis of chest radiographs and computed tomography (CT) scans is restricted by low specificity for causal infectious organisms and a limited capacity to assess severity and predict patient outcomes. These limitations suggest that computer-assisted detection (CAD) could make a valuable contribution to the management of respiratory tract infections by assisting in the early recognition of pulmonary parenchymal lesions, providing quantitative measures of disease severity and assessing the response to therapy. In this paper, we review the most common radiographic and CT features of respiratory tract infections, discuss the challenges of defining and measuring these disorders with CAD, and propose some strategies to address these challenges.


IEEE Transactions on Medical Imaging | 2012

Hierarchical Scale-Based Multiobject Recognition of 3-D Anatomical Structures

Ulas Bagci; Xinjian Chen; Jayaram K. Udupa

Segmentation of anatomical structures from medical images is a challenging problem, which depends on the accurate recognition (localization) of anatomical structures prior to delineation. This study generalizes anatomy segmentation problem via attacking two major challenges: 1) automatically locating anatomical structures without doing search or optimization, and 2) automatically delineating the anatomical structures based on the located model assembly. For 1), we propose intensity weighted ball-scale object extraction concept to build a hierarchical transfer function from image space to object (shape) space such that anatomical structures in 3-D medical images can be recognized without the need to perform search or optimization. For 2), we integrate the graph-cut (GC) segmentation algorithm with prior shape model. This integrated segmentation framework is evaluated on clinical 3-D images consisting of a set of 20 abdominal CT scans. In addition, we use a set of 11 foot MR images to test the generalizability of our method to the different imaging modalities as well as robustness and accuracy of the proposed methodology. Since MR image intensities do not possess a tissue specific numeric meaning, we also explore the effects of intensity nonstandardness on anatomical object recognition. Experimental results indicate that: 1) effective recognition can make the delineation more accurate; 2) incorporating a large number of anatomical structures via a model assembly in the shape model improves the recognition and delineation accuracy dramatically; 3) ball-scale yields useful information about the relationship between the objects and the image; 4) intensity variation among scenes in an ensemble degrades object recognition performance.


The Journal of Pathology | 2015

Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation.

Andre Kubler; Brian Luna; Christer Larsson; Nicole C. Ammerman; Bruno B. Andrade; Marlene Orandle; Kevin W. Bock; Ziyue Xu; Ulas Bagci; Daniel J Molura; John Marshall; Jay Burns; Kathryn Winglee; Bintou Ahmadou Ahidjo; Laurene S. Cheung; Mariah Klunk; Sanjay K. Jain; Nathella Pavan Kumar; Subash Babu; Alan Sher; Jon S. Friedland; Paul T. Elkington; William R. Bishai

Active tuberculosis (TB) often presents with advanced pulmonary disease, including irreversible lung damage and cavities. Cavitary pathology contributes to antibiotic failure, transmission, morbidity and mortality. Matrix metalloproteinases (MMPs), in particular MMP‐1, are implicated in TB pathogenesis. We explored the mechanisms relating MMP/TIMP imbalance to cavity formation in a modified rabbit model of cavitary TB. Our model resulted in consistent progression of consolidation to human‐like cavities (100% by day 28), with resultant bacillary burdens (>107 CFU/g) far greater than those found in matched granulomatous tissue (105 CFU/g). Using a novel, breath‐hold computed tomography (CT) scanning and image analysis protocol, we showed that cavities developed rapidly from areas of densely consolidated tissue. Radiological change correlated with a decrease in functional lung tissue, as estimated by changes in lung density during controlled pulmonary expansion (R2 = 0.6356, p < 0.0001). We demonstrated that the expression of interstitial collagenase (MMP‐1) was specifically greater in cavitary compared to granulomatous lesions (p < 0.01), and that TIMP‐3 significantly decreased at the cavity surface. Our findings demonstrated that an MMP‐1/TIMP imbalance is associated with the progression of consolidated regions to cavities containing very high bacterial burdens. Our model provided mechanistic insight, correlating with human disease at the pathological, microbiological and molecular levels. It also provided a strategy to investigate therapeutics in the context of complex TB pathology. We used these findings to predict a MMP/TIMP balance in active TB and confirmed this in human plasma, revealing the potential of MMP/TIMP levels as key components of a diagnostic matrix aimed at distinguishing active from latent TB (PPV = 92.9%, 95% CI 66.1–99.8%, NPV = 85.6%; 95% CI 77.0–91.9%). Copyright


Medical Physics | 2011

3D automatic anatomy segmentation based on iterative graph-cut-ASM

Xinjian Chen; Ulas Bagci

PURPOSE This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. METHODS The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al. [Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. RESULTS The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 degrees and 0.03, and over all foot bones are about 3.5709 mm, 0.35 degrees and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively. While the delineations for the four organs can be accomplished quite rapidly with average of 78 s, the delineations for the five foot bones can be accomplished with average of 70 s. CONCLUSIONS The experimental results showed the feasibility and efficacy of the proposed automatic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than ASM and GC individually; and (c) delineations within body regions and foot bones of clinical importance can be accomplished quite rapidly within 1.5 min.


IEEE Transactions on Biomedical Engineering | 2013

Introducing Willmore Flow Into Level Set Segmentation of Spinal Vertebrae

Poay Hoon Lim; Ulas Bagci; Li Bai

Segmentation of spinal vertebrae in 3-D space is a crucial step in the study of spinal related disease or disorders. However, the complexity of vertebrae shapes, with gaps in the cortical bone and boundaries, as well as noise, inhomogeneity, and incomplete information in images, has made spinal vertebrae segmentation a difficult task. In this paper, we introduce a new method for an accurate spinal vertebrae segmentation that is capable of dealing with noisy images with missing information. This is achieved by introducing an edge-mounted Willmore flow, as well as a prior shape kernel density estimator, to the level set segmentation framework. While the prior shape model provides much needed prior knowledge when information is missing from the image, and draws the level set function toward prior shapes, the edge-mounted Willmore flow helps to capture the local geometry and smoothes the evolving level set surface. Evaluation of the segmentation results with ground-truth validation demonstrates the effectiveness of the proposed approach: an overall accuracy of 89.32±1.70% and 14.03±1.40&nbsp;mm are achieved based on the Dice similarity coefficient and Hausdorff distance, respectively, while the inter- and intraobserver variation agreements are 92.11±1.97%, 94.94±1.69%, 3.32±0.46, and 3.80±0.56 mm.

Collaboration


Dive into the Ulas Bagci's collaboration.

Top Co-Authors

Avatar

Daniel J. Mollura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ziyue Xu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Georgios Z. Papadakis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brent Foster

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jayaram K. Udupa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jianhua Yao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Li Bai

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Corina Millo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Awais Mansoor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sanjay K. Jain

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge