Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziyue Xu is active.

Publication


Featured researches published by Ziyue Xu.


IEEE Transactions on Medical Imaging | 2016

Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

Hoo-Chang Shin; Holger R. Roth; Mingchen Gao; Le Lu; Ziyue Xu; Isabella Nogues; Jianhua Yao; Daniel J. Mollura; Ronald M. Summers

Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.


Computers in Biology and Medicine | 2014

A Review on Segmentation of Positron Emission Tomography Images

Brent Foster; Ulas Bagci; Awais Mansoor; Ziyue Xu; Daniel J. Mollura

Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results.


Medical Image Analysis | 2013

Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images.

Ulas Bagci; Jayaram K. Udupa; Neil Mendhiratta; Brent Foster; Ziyue Xu; Jianhua Yao; Xinjian Chen; Daniel J. Mollura

We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use.


IEEE Transactions on Medical Imaging | 2014

A Generic Approach to Pathological Lung Segmentation

Awais Mansoor; Ulas Bagci; Ziyue Xu; Brent Foster; Kenneth N. Olivier; Jason M. Elinoff; Jayaram K. Udupa; Daniel J. Mollura

In this study, we propose a novel pathological lung segmentation method that takes into account neighbor prior constraints and a novel pathology recognition system. Our proposed framework has two stages; during stage one, we adapted the fuzzy connectedness (FC) image segmentation algorithm to perform initial lung parenchyma extraction. In parallel, we estimate the lung volume using rib-cage information without explicitly delineating lungs. This rudimentary, but intelligent lung volume estimation system allows comparison of volume differences between rib cage and FC based lung volume measurements. Significant volume difference indicates the presence of pathology, which invokes the second stage of the proposed framework for the refinement of segmented lung. In stage two, texture-based features are utilized to detect abnormal imaging patterns (consolidations, ground glass, interstitial thickening, tree-inbud, honeycombing, nodules, and micro-nodules) that might have been missed during the first stage of the algorithm. This refinement stage is further completed by a novel neighboring anatomy-guided segmentation approach to include abnormalities with weak textures, and pleura regions. We evaluated the accuracy and efficiency of the proposed method on more than 400 CT scans with the presence of a wide spectrum of abnormalities. To our best of knowledge, this is the first study to evaluate all abnormal imaging patterns in a single segmentation framework. The quantitative results show that our pathological lung segmentation method improves on current standards because of its high sensitivity and specificity and may have considerable potential to enhance the performance of routine clinical tasks.


The Journal of Pathology | 2015

Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation.

Andre Kubler; Brian Luna; Christer Larsson; Nicole C. Ammerman; Bruno B. Andrade; Marlene Orandle; Kevin W. Bock; Ziyue Xu; Ulas Bagci; Daniel J Molura; John Marshall; Jay Burns; Kathryn Winglee; Bintou Ahmadou Ahidjo; Laurene S. Cheung; Mariah Klunk; Sanjay K. Jain; Nathella Pavan Kumar; Subash Babu; Alan Sher; Jon S. Friedland; Paul T. Elkington; William R. Bishai

Active tuberculosis (TB) often presents with advanced pulmonary disease, including irreversible lung damage and cavities. Cavitary pathology contributes to antibiotic failure, transmission, morbidity and mortality. Matrix metalloproteinases (MMPs), in particular MMP‐1, are implicated in TB pathogenesis. We explored the mechanisms relating MMP/TIMP imbalance to cavity formation in a modified rabbit model of cavitary TB. Our model resulted in consistent progression of consolidation to human‐like cavities (100% by day 28), with resultant bacillary burdens (>107 CFU/g) far greater than those found in matched granulomatous tissue (105 CFU/g). Using a novel, breath‐hold computed tomography (CT) scanning and image analysis protocol, we showed that cavities developed rapidly from areas of densely consolidated tissue. Radiological change correlated with a decrease in functional lung tissue, as estimated by changes in lung density during controlled pulmonary expansion (R2 = 0.6356, p < 0.0001). We demonstrated that the expression of interstitial collagenase (MMP‐1) was specifically greater in cavitary compared to granulomatous lesions (p < 0.01), and that TIMP‐3 significantly decreased at the cavity surface. Our findings demonstrated that an MMP‐1/TIMP imbalance is associated with the progression of consolidated regions to cavities containing very high bacterial burdens. Our model provided mechanistic insight, correlating with human disease at the pathological, microbiological and molecular levels. It also provided a strategy to investigate therapeutics in the context of complex TB pathology. We used these findings to predict a MMP/TIMP balance in active TB and confirmed this in human plasma, revealing the potential of MMP/TIMP levels as key components of a diagnostic matrix aimed at distinguishing active from latent TB (PPV = 92.9%, 95% CI 66.1–99.8%, NPV = 85.6%; 95% CI 77.0–91.9%). Copyright


Computer methods in biomechanics and biomedical engineering. Imaging & visualization | 2018

Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks

Mingchen Gao; Ulas Bagci; Le Lu; Aaron Wu; Mario Buty; Hoo-Chang Shin; Holger R. Roth; Georgios Z. Papadakis; Adrien Depeursinge; Ronald M. Summers; Ziyue Xu; Daniel J. Mollura

Interstitial lung diseases (ILD) involve several abnormal imaging patterns observed in computed tomography (CT) images. Accurate classification of these patterns plays a significant role in precise clinical decision making of the extent and nature of the diseases. Therefore, it is important for developing automated pulmonary computer-aided detection systems. Conventionally, this task relies on experts’ manual identification of regions of interest (ROIs) as a prerequisite to diagnose potential diseases. This protocol is time consuming and inhibits fully automatic assessment. In this paper, we present a new method to classify ILD imaging patterns on CT images. The main difference is that the proposed algorithm uses the entire image as a holistic input. By circumventing the prerequisite of manual input ROIs, our problem set-up is significantly more difficult than previous work but can better address the clinical workflow. Qualitative and quantitative results using a publicly available ILD database demonstrate state-of-the-art classification accuracy under the patch-based classification and shows the potential of predicting the ILD type using holistic image.


Radiographics | 2015

Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends.

Awais Mansoor; Ulas Bagci; Brent Foster; Ziyue Xu; Georgios Z. Papadakis; Les R. Folio; Jayaram K. Udupa; Daniel J. Mollura

The computer-based process of identifying the boundaries of lung from surrounding thoracic tissue on computed tomographic (CT) images, which is called segmentation, is a vital first step in radiologic pulmonary image analysis. Many algorithms and software platforms provide image segmentation routines for quantification of lung abnormalities; however, nearly all of the current image segmentation approaches apply well only if the lungs exhibit minimal or no pathologic conditions. When moderate to high amounts of disease or abnormalities with a challenging shape or appearance exist in the lungs, computer-aided detection systems may be highly likely to fail to depict those abnormal regions because of inaccurate segmentation methods. In particular, abnormalities such as pleural effusions, consolidations, and masses often cause inaccurate lung segmentation, which greatly limits the use of image processing methods in clinical and research contexts. In this review, a critical summary of the current methods for lung segmentation on CT images is provided, with special emphasis on the accuracy and performance of the methods in cases with abnormalities and cases with exemplary pathologic findings. The currently available segmentation methods can be divided into five major classes: (a) thresholding-based, (b) region-based, (c) shape-based, (d) neighboring anatomy-guided, and (e) machine learning-based methods. The feasibility of each class and its shortcomings are explained and illustrated with the most common lung abnormalities observed on CT images. In an overview, practical applications and evolving technologies combining the presented approaches for the practicing radiologist are detailed.


IEEE Transactions on Biomedical Engineering | 2014

Segmentation of PET Images for Computer-Aided Functional Quantification of Tuberculosis in Small Animal Models

Brent Foster; Ulas Bagci; Ziyue Xu; Bappaditya Dey; Brian Luna; William R. Bishai; Sanjay K. Jain; Daniel J. Mollura

Pulmonary infections often cause spatially diffuse and multi-focal radiotracer uptake in positron emission tomography (PET) images, which makes accurate quantification of the disease extent challenging. Image segmentation plays a vital role in quantifying uptake due to the distributed nature of immuno-pathology and associated metabolic activities in pulmonary infection, specifically tuberculosis (TB). For this task, thresholding-based segmentation methods may be better suited over other methods; however, performance of the thresholding-based methods depend on the selection of thresholding parameters, which are often suboptimal. Several optimal thresholding techniques have been proposed in the literature, but there is currently no consensus on how to determine the optimal threshold for precise identification of spatially diffuse and multi-focal radiotracer uptake. In this study, we propose a method to select optimal thresholding levels by utilizing a novel intensity affinity metric within the affinity propagation clustering framework. We tested the proposed method against 70 longitudinal PET images of rabbits infected with TB. The overall dice similarity coefficient between the segmentation from the proposed method and two expert segmentations was found to be 91.25 ±8.01% with a sensitivity of 88.80 ±12.59% and a specificity of 96.01 ±9.20%. High accuracy and heightened efficiency of our proposed method, as compared to other PET image segmentation methods, were reported with various quantification metrics.


medical image computing and computer assisted intervention | 2017

Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images

Adam P. Harrison; Ziyue Xu; Kevin George; Le Lu; Ronald M. Summers; Daniel J. Mollura

Pathological lung segmentation (PLS) is an important, yet challenging, medical image application due to the wide variability of pathological lung appearance and shape. Because PLS is often a pre-requisite for other imaging analytics, methodological simplicity and generality are key factors in usability. Along those lines, we present a bottom-up deep-learning based approach that is expressive enough to handle variations in appearance, while remaining unaffected by any variations in shape. We incorporate the deeply supervised learning framework, but enhance it with a simple, yet effective, progressive multi-path scheme, which more reliably merges outputs from different network stages. The result is a deep model able to produce finer detailed masks, which we call progressive holistically-nested networks (P-HNNs). Using extensive cross-validation, our method is tested on multi-institutional datasets comprising 929 CT scans (848 publicly available), of pathological lungs, reporting mean dice scores of 0.985 and demonstrating significant qualitative and quantitative improvements over state-of-the art approaches.


medical image computing and computer-assisted intervention | 2013

Spatially Constrained Random Walk Approach for Accurate Estimation of Airway Wall Surfaces

Ziyue Xu; Ulas Bagci; Brent Foster; Awais Mansoor; Daniel J. Mollura

Assessing airway wall surfaces and the lumen from high resolution computed tomography (CT) scans are of great importance for diagnosing pulmonary diseases. However, accurately determining inner and outer airway wall surfaces of a complete 3-D tree structure can be quite challenging because of its complex nature. In this paper, we introduce a computational framework to accurately quantify airways through (i) a precise segmentation of the lumen, and (ii) a spatially constrained Markov random walk method to estimate the airway walls. Our results demonstrate that the proposed airway analysis platform identified the inner and outer airway surfaces better than methods commonly used in clinics, such as full width at half maximum and phase congruency.

Collaboration


Dive into the Ziyue Xu's collaboration.

Top Co-Authors

Avatar

Daniel J. Mollura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ulas Bagci

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Brent Foster

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mingchen Gao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sanjay K. Jain

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Adam P. Harrison

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Awais Mansoor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jayaram K. Udupa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Brian Luna

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Le Lu

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge