Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulf Diekmann is active.

Publication


Featured researches published by Ulf Diekmann.


BMC Research Notes | 2014

Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors.

Ortwin Naujok; Jana Lentes; Ulf Diekmann; Claudia Davenport; Sigurd Lenzen

BackgroundSmall membrane-permeable molecules are now widely used during maintenance and differentiation of embryonic stem cells of different species. In particular the glycogen synthase kinase 3 (GSK3) is an interesting target, since its chemical inhibition activates the Wnt/beta-catenin pathway. In the present comparative study four GSK3 inhibitors were characterized.MethodsCytotoxicity and potential to activate the Wnt/beta-catenin pathway were tested using the commonly used GSK3 inhibitors BIO, SB-216763, CHIR-99021, and CHIR-98014. Wnt/beta-catenin-dependent target genes were measured by quantitative PCR to confirm the Wnt-reporter assay and finally EC50-values were calculated.ResultsCHIR-99021 and SB-216763 had the lowest toxicities in mouse embryonic stem cells and CHIR-98014 and BIO the highest toxicities. Only CHIR-99021 and CHIR-98014 lead to a strong induction of the Wnt/beta-catenin pathway, whereas BIO and SB-216763 showed a minor or no increase in activation of the Wnt/beta-catenin pathway over the natural ligand Wnt3a. The data from the Wnt-reporter assay were confirmed by gene expression analysis of the TCF/LEF regulated gene T.ConclusionsOut of the four tested GSK3 inhibitors, only CHIR-99021 and CHIR-98014 proved to be potent pharmacological activators of the Wnt/beta-catenin signaling pathway. But only in the case of CHIR-99021 high potency was combined with very low toxicity.


Stem Cell Reviews and Reports | 2014

The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling

Ortwin Naujok; Ulf Diekmann; Sigurd Lenzen

The activation of the TGF-beta pathway by activin A directs ES cells into the definitive endoderm germ layer. However, there is evidence that activin A/TGF-beta is not solely responsible for differentiation into definitive endoderm. GSK3beta inhibition has recently been shown to generate definitive endoderm-like cells from human ES cells via activation of the canonical Wnt-pathway. The GSK3beta inhibitor CHIR-99021 has been reported to generate mesoderm from human iPS cells. Thus, the specific role of the GSK3beta inhibitor CHIR-99021 was analyzed during the differentiation of human ES cells and compared against a classic endoderm differentiation protocol. At high concentrations of CHIR-99021, the cells were directed towards mesodermal cell fates, while low concentrations permitted mesodermal and endodermal differentiation. Finally, the analyses revealed that GSK3beta inhibition rapidly directed human ES cells into a primitive streak-like cell type independently from the TGF-beta pathway with mesoderm and endoderm differentiation potential. Addition of low activin A concentrations effectively differentiated these primitive streak-like cells into definitive endoderm. Thus, the in vitro differentiation of human ES cells into definitive endoderm is initially independent from the activin A/TGF-beta pathway but requires high canonical Wnt-signaling activity.


Molecular & Cellular Proteomics | 2016

Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG)

Christina T. Thiesler; Samanta Cajic; Dirk Hoffmann; Christian Thiel; Laura van Diepen; Rene Hennig; Malte Sgodda; Robert Weiβmann; Udo Reichl; Doris Steinemann; Ulf Diekmann; Nicolas M. B. Huber; Astrid Oberbeck; Tobias Cantz; Andreas W. Kuss; Christian Körner; Axel Schambach; Erdmann Rapp; Falk F. R. Buettner

PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors and in vitro differentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCs in vitro. Knock-down of PMM2 by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.


Stem Cell Reviews and Reports | 2013

MicroRNA Target Sites as Genetic Tools to Enhance Promoter-Reporter Specificity for the Purification of Pancreatic Progenitor Cells from Differentiated Embryonic Stem Cells

Ulf Diekmann; Matthias Elsner; Jan Fiedler; Thomas Thum; Sigurd Lenzen; Ortwin Naujok

Pluripotent cells hold great promise for cell replacement therapies in regenerative medicine. All known protocols for directed in vitro differentiation of pluripotent cells did not yield pure populations complicating the characterization of the derived cells. In addition, the risk of tumor formation due to residual undifferentiated cells is a serious unresolved problem. In the present study the tissue-specific mouse Pdx1 promoter was used to control the expression of the reporter gene GFP2 in mouse ES cells in order to purify them via FACS during in vitro differentiation. The background fluorescence of transduced ES cells hampered the purification of Pdx1-positive cells due to a contaminating population of partially undifferentiated cells. MicroRNAs (mir) are important regulators of gene expression and were used to enhance promoter specificity during differentiation towards pancreatic progenitor cells. The mouse mmu-mir-294 was found to be mainly expressed during pluripotency, whereas the expression of the mir-302 cluster was increased during early differentiation. Integration of a microRNA target site for the mmu-mir-294 into the lentiviral vector reduced the background fluorescence specifically during pluripotency and permitted re-occurrence of GFP2 expression upon differentiation. A combination of the microRNA target site with the Pdx1 promoter fragment allowed the purification of pancreatic progenitors from differentiated ES cells. This population reflected an early pancreatic progenitor population without other contaminating cell lineages. In conclusion, microRNA target sites are efficient regulatory elements to control transgene expression and to enhance tissue specificity as presented in this study facilitating the sorting and purification of Pdx1-positive pancreatic progenitor cells.


Stem Cells | 2016

Anterior–Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt-, and BMP-Signaling

Claudia Davenport; Ulf Diekmann; Insa Budde; Nora Detering; Ortwin Naujok

As known from model organisms, such as frog, fish, mouse, and chicken, the anterior–posterior patterning of the definitive endoderm (DE) into distinct domains is controlled by a variety of signaling interactions between the DE and its surrounding mesoderm. This includes Wnt/FGFs and BMPs in the posterior half and all‐trans‐retinoic acid, TGF‐β‐ligands, Wnt‐, and BMP‐inhibitors in the anterior half of the DE sheet. However, it is currently unclear how these embryonic tissue interactions can be translated into a defined differentiation protocol for human embryonic stem cells. Activin A has been proposed to direct DE into a SOX2‐positive foregut‐like cell type. Due to the pleiotropic nature of SOX2 in pluripotency and developing cells of the foregut, we purified DE‐cells by magnetic cell sorting and tested the effects of anteriorizing and posteriorizing factors on pure endoderm. We show in contrast to previous studies that the generation of the foregut marked by SOX2/FOXA2 double‐positive cells does not depend on activin A/TGF‐β‐signaling but is mediated by the inhibition of Wnt‐ and BMP‐signaling. Retinoic acid can posteriorize and at the same time dorsalize the foregut toward a PDX1‐positive pancreatic duodenal cell type whereas active Wnt/beta‐catenin signaling synergistically with FGF‐2, BMP‐4, and RA induces the formation of CDX2‐positive posterior endoderm. Thus, these results provide new insights into the mechanisms behind cell specification of human DE derived from pluripotent stem cells. Stem Cells 2016;34:2635–2647


Journal of Tissue Engineering and Regenerative Medicine | 2015

Embryonic stem cells of the non‐human primate Callithrix jacchus can be differentiated into definitive endoderm by Activin‐A but not IDE‐1/2

Ulf Diekmann; Ortwin Naujok; Rainer Blasczyk; Thomas Müller

Pluripotent stem cells hold great promise for regenerative medicine, due to their unlimited self‐renewal potential and the ability to differentiate into all somatic cell types. Differences between the rodent disease models and the situation in humans can be narrowed down with non‐human primate models. The common marmoset monkey (Callithrix jacchus) is an interesting model for biomedical research because these animals are easy to breed, get relatively old (≤ 13 years), are small in size, are relatively cost‐effective and have a high genetic proximity to the human. In particular, diseases of the liver and pancreas are interesting for cell replacement therapies but the in vitro differentiation of ESCs into the definitive endoderm germ layer is still a demanding task. Membrane‐permeable, chemically defined small molecules can possibly replace recombinant growth factors used in most directed differentiation protocols. However, the potent small molecules IDE‐1 and IDE‐2 were not able to induce definitive endoderm‐like cells when ESCs from the common marmoset were treated with these compounds, whereas the recombinant growth factor Activin A could force the differentiation into this lineage. Our results indicate that ESCs from the common marmoset are less sensitive or even insensitive to these small molecules. Thus, differences between the species of human ESCs and ESCs of this non‐human primate might be a useful model to further evaluate the exact mode of action of these compounds. Copyright


Islets | 2012

Islet microarchitecture and glucose transporter expression of the pancreas of the marmoset monkey display similarities to the human.

Ruben R. Plentz; Vindhya Palagani; Anastasia Wiedemann; Ulf Diekmann; Silke Glage; Ortwin Naujok; Anne Jörns; Thomas Müller

The common marmoset New World monkey (Callithrix jacchus), is a primate model with great potential for scientific research, including research on diabetes. However, in opposite to Rhesus and Java monkeys (Macaca mulatta and Macaca fascicularis) little is known about the marmosets islet microarchitecture, glucose transporter and pancreatic marker gene expression. In this work we analyze differences and similarities in size, shape, cellular composition and intra-islet topography between the common marmoset and the human endocrine pancreas. Different sized, circular and a-circular shaped islets of the common marmoset and human display α-cells in the whole islet organ leading to a ribbon-like islet type. The number of islets was significantly higher in the common marmoset compared with humans. However, the area of insulin-producing cells was significantly higher in the human pancreas. Intra-islet distribution pattern of δ- and β-cells was similar in both species. The morphology of the exocrine pancreas regarding acinar and ductal cells was quite similar as confirmed by ultrastructural analysis. Additionally the ultrastructure of secretory granules from α-, δ- and β-cells of human and non-human primate pancreas showed the same characteristics. Molecular analysis showed the presence of endocrine pancreatic marker genes like PMCA2, NCX1, SUR1, KIR6.2, MAFA, NGN3 and PDX1 also expressed in the human. For the first time we could show presence of Glut 5 and 9 transporters in addition to the low abundance transporter Glut2 and the highly expressed Glut1 glucose transporter. We propose that Callithrix jacchus displays a new animal model for diabetes research and regenerative medicine.


Stem cell reports | 2017

miRNome Profiling of Purified Endoderm and Mesoderm Differentiated from hESCs Reveals Functions of miR-483-3p and miR-1263 for Cell-Fate Decisions

Daichi Ishikawa; Ulf Diekmann; Jan Fiedler; Annette Just; Thomas Thum; Sigurd Lenzen; Ortwin Naujok

Summary Pluripotent stem cells hold great promise for regenerative medicine since they can differentiate into all somatic cells. MicroRNAs (miRNAs) could be important for the regulation of these cell-fate decisions. Profiling of miRNAs revealed 19 differentially expressed miRNAs in the endoderm and 29 in the mesoderm when analyzing FACS-purified cells derived from human embryonic stem cells. The mesodermal-enriched miR-483-3p was identified as an important regulator for the generation of mesodermal PDGFRA+ paraxial cells. Repression of its target PGAM1 significantly increased the number of PDGFRA+ cells. Furthermore, miR-483-3p, miR-199a-3p, and miR-214-3p might also have functions for the mesodermal progenitors. The endoderm-specific miR-489-3p and miR-1263 accelerated and increased endoderm differentiation upon overexpression. KLF4 was identified as a target of miR-1263. RNAi-mediated downregulation of KLF4 partially mimicked miR-1263 overexpression. Thus, the effects of this miRNA were mediated by facilitating differentiation through destabilization of pluripotency along with other not yet defined targets.


Journal of Visualized Experiments | 2016

A Quick and Efficient Method for the Purification of Endoderm Cells Generated from Human Embryonic Stem Cells.

Claudia Davenport; Ulf Diekmann; Ortwin Naujok

The differentiation capabilities of pluripotent stem cells such as embryonic stem cells (ESCs) allow a potential therapeutic application for cell replacement therapies. Terminally differentiated cell types could be used for the treatment of various degenerative diseases. In vitro differentiation of these cells towards tissues of the lung, liver and pancreas requires as a first step the generation of definitive endodermal cells. This step is rate-limiting for further differentiation towards terminally matured cell types such as insulin-producing beta cells, hepatocytes or other endoderm-derived cell types. Cells that are committed towards the endoderm lineage highly express a multitude of transcription factors such as FOXA2, SOX17, HNF1B, members of the GATA family, and the surface receptor CXCR4. However, differentiation protocols are rarely 100% efficient. Here, we describe a method for the purification of a CXCR4+ cell population after differentiation into the DE by using magnetic microbeads. This purification additionally removes cells of unwanted lineages. The gentle purification method is quick and reliable and might be used to improve downstream applications and differentiations.


Methods of Molecular Biology | 2015

Gene Transfer into Pluripotent Stem Cells via Lentiviral Transduction.

Ortwin Naujok; Ulf Diekmann; Matthias Elsner

Recombinant lentiviral vectors are powerful tools to stably manipulate human pluripotent stem cells. They can be used to deliver ectopic genes, shRNAs, miRNAs, or any possible genetic DNA sequence into diving and nondividing cells. Here we describe a general protocol for the production of self-inactivating lentiviral vector particles and their purification to high titers by either ultracentrifugation or ultrafiltration. Next we provide a basic procedure to transduce human pluripotent stem cells and propagate clonal cell lines.

Collaboration


Dive into the Ulf Diekmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Fiedler

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Thum

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge