Ulf Dühring
Algenol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulf Dühring.
Biotechnology for Biofuels | 2014
Dennis Dienst; Jens Georg; Thomas Abts; Lew Jakorew; Ekaterina Kuchmina; Thomas Börner; Annegret Wilde; Ulf Dühring; Heike Enke; Wolfgang R. Hess
BackgroundThe production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering cyanobacteria into forced fuel producers should considerably interfere with overall cell homeostasis, which in turn might counteract productivity and sustainability of the process. Therefore, in-depth characterization of the cellular response upon long-term production is of high interest for the targeted improvement of a desired strain.ResultsThe transcriptome-wide response to continuous ethanol production was examined in Synechocystis sp. PCC6803 using high resolution microarrays. In two independent experiments, ethanol production rates of 0.0338% (v/v) ethanol d-1 and 0.0303% (v/v) ethanol d-1 were obtained over 18 consecutive days, measuring two sets of biological triplicates in fully automated photobioreactors. Ethanol production caused a significant (~40%) delay in biomass accumulation, the development of a bleaching phenotype and a down-regulation of light harvesting capacity. However, microarray analyses performed at day 4, 7, 11 and 18 of the experiment revealed only three mRNAs with a strongly modified accumulation level throughout the course of the experiment. In addition to the overexpressed adhA (slr1192) gene, this was an approximately 4 fold reduction in cpcB (sll1577) and 3 to 6 fold increase in rps8 (sll1809) mRNA levels. Much weaker modifications of expression level or modifications restricted to day 18 of the experiment were observed for genes involved in carbon assimilation (Ribulose bisphosphate carboxylase and Glutamate decarboxylase). Molecular analysis of the reduced cpcB levels revealed a post-transcriptional processing of the cpcBA operon mRNA leaving a truncated mRNA cpcA* likely not competent for translation. Moreover, western blots and zinc-enhanced bilin fluorescence blots confirmed a severe reduction in the amounts of both phycocyanin subunits, explaining the cause of the bleaching phenotype.ConclusionsChanges in gene expression upon induction of long-term ethanol production in Synechocystis sp. PCC6803 are highly specific. In particular, we did not observe a comprehensive stress response as might have been expected.
PLOS ONE | 2012
Ulrich M Tillich; Sandra Lehmann; Katja Schulze; Ulf Dühring; Marcus Frohme
Random mutagenesis is a useful tool to genetically modify organisms for various purposes, such as adaptation to cultivation conditions, the induction of tolerances, or increased yield of valuable substances. This is especially attractive for systems where it is not obvious which genes require modifications. Random mutagenesis has been extensively used to modify crop plants, but even with the renewed interest in microalgae and cyanobacteria for biofuel applications, there is relatively limited current research available on the application of random mutagenesis for these organisms, especially for cyanobacteria. In the presented work we characterized the lethality and rate of non-lethal point mutations for ultraviolet radiation and methyl methanesulphonate on the model cyanobacteria Synechocystis sp. PCC6803. Based on these results an optimal dosage of 10–50 J/m2 for UV and either 0.1 or 1 v% for MMS was determined. A Synechocystis wildtype culture was then mutagenized and selected for increased temperature tolerance in vivo. During the second round of mutagenesis the viability of the culture was monitored on a cell by cell level from the treatment of the cells up to the growth at an increased temperature. After four distinct rounds of treatment (two with each mutagen) the temperature tolerance of the strain was effectively raised by about 2°C. Coupled with an appropriate in vivo screening, the described methods should be applicable to induce a variety of desirable characteristics in various strains. Coupling random mutagenesis with high-throughput screening methods would additionally allow to select for important characteristics for biofuel production, which do not yield a higher fitness and can not be selected for in vivo, such as fatty acid concentration. In a combined approach with full genome sequencing random mutagenesis could be used to determine suitable target-genes for more focused methods.
Biotechnology for Biofuels | 2016
Nadin Pade; Sabrina Erdmann; Heike Enke; Frederik Dethloff; Ulf Dühring; Jens Georg; Juliane Wambutt; Joachim Kopka; Wolfgang R. Hess; Ralf Zimmermann; Dan Kramer; Martin Hagemann
BackgroundCyanobacteria are phototrophic prokaryotes that convert inorganic carbon as CO2 into organic compounds at the expense of light energy. They need only inorganic nutrients and can be cultivated to high densities using non-arable land and seawater. This has made cyanobacteria attractive organisms for the production of biofuels and chemical feedstock. Synechocystis sp. PCC 6803 is one of the most widely used cyanobacterial model strains. Based on its available genome sequence and genetic tools, Synechocystis has been genetically modified to produce different biotechnological products. Efficient isoprene production is an attractive goal because this compound is widely used as chemical feedstock.ResultsHere, we report on our attempts to generate isoprene-producing strains of Synechocystis using a plasmid-based strategy. As previously reported, a codon-optimized plant isoprene synthase (IspS) was expressed under the control of different Synechocystis promoters that ensure strong constitutive or light-regulated ispS expression. The expression of the ispS gene was quantified by qPCR and Western blotting, while the amount of isoprene was quantified using GC—MS. In addition to isoprene measurements in the headspace of closed culture vessels, single photon ionization time-of-flight mass spectrometry (SPI-MS) was applied, which allowed online measurements of isoprene production in open-cultivation systems under various conditions. Under standard conditions, a good correlation existed between ispS expression and isoprene production rate. The cultivation of isoprene production strains under NaCl-supplemented conditions decreased isoprene production despite enhanced ispS mRNA levels. The characterization of the metabolome of isoprene-producing strains indicated that isoprene production might be limited by insufficient precursor levels. Transcriptomic analysis revealed the upregulation of mRNA and regulatory RNAs characteristic of acclimation to metabolic stress.ConclusionsOur best production strains produced twofold higher isoprene amounts in the presence of low NaCl concentrations than previously reported strains. These results will guide future attempts to establish isoprene production in cyanobacterial hosts.
BMC Biotechnology | 2014
Ulrich M Tillich; Nick Wolter; Philipp Franke; Ulf Dühring; Marcus Frohme
BackgroundTemperature tolerance is an important aspect for commercial scale outdoor cultivation of microalgae and cyanobacteria. While various genes are known to be related to Synechocystis sp. PCC6803s heat shock response, there is very limited published data concerning the specific genes involved in long term thermal tolerance. We have previously used random mutagenesis and adaptive evolution to generate a mixture of strains of Synechocystis sp. PCC6803 with significantly increased thermal tolerance. The genetic modifications leading to the phenotypes of the newly generated strains are the focus of this work.ResultsWe used a custom screening platform, based on 96-deepwell microplate culturing in an in house designed cultivation chamber integrated in a liquid handling robot for screening and selection; in addition we also used a more conventional system. The increased thermal tolerances of the isolated monoclonal strains were validated in larger bioreactors and their whole genomes sequenced. Comparison of the sequence information to the parental wild type identified various mutations responsible for the enhanced phenotypes. Among the affected genes identified are clpC, pnp, pyk2, sigF, nlpD, pyrR, pilJ and cya1.ConclusionsThe applied methods (random mutagenesis, in vivo selection, screening, validation, whole genome sequencing) were successfully applied to identify various mutations, some of which are very unlikely to have been identified by other approaches. Several of the identified mutations are found in various strains and (due to their distribution) are likely to have occurred independently. This, coupled with the relatively low number of affected genes underscores the significance of these specific mutations to convey thermal tolerance in Synechocystis.
Microbiology | 2017
Ekaterina Kuchmina; Stephan Klähn; Annik Jakob; Werner Bigott; Heike Enke; Ulf Dühring; Annegret Wilde
Ethylene is a gaseous signal sensed by plants and bacteria. Heterologous expression of the ethylene-forming enzyme (EFE) from Pseudomonas syringae in cyanobacteria leads to the production of ethylene under photoautotrophic conditions. The recent characterization of an ethylene-responsive signalling pathway affecting phototaxis in the cyanobacterium Synechocystis sp. PCC 6803 implied that biotechnologically relevant ethylene synthesis may induce regulatory processes that are not related to changes in metabolism. Here, we provide data that indicate that endogenously produced ethylene accelerates the movement of cells towards light. Microarray analysis demonstrates that ethylene mainly deactivates transcription from the csiR1/lsiR promoter, which is under the control of the two-component system consisting of the ethylene- and UV-A-sensing histidine kinase UirS and the DNA-binding response regulator UirR. Surprisingly, ethylene production triggers a very specific transcriptional response and only a few other smaller transcriptional changes are detected in the microarray analysis.
Archive | 1998
R. Paul Woods; Craig R. Smith; Dan Kramer; Heike Enke; Kerstin Baier; Ulf Dühring; Karl Ziegler; Wolfgang Lockau; Marianne Gründel; John Robert Coleman; Christine Oesterhelt
Archive | 2009
Ulf Dühring; Karl Ziegler; Dan Kramer
Archive | 2009
Kerstin Baier; Ulf Dühring; Heike Enke; Marianne Gründel; Wolfgang Lockau; Craig R. Smith; Paul Woods; Karl Ziegler; Christine Oesterhelt; John Robert Coleman; Dan Kramer
Biotechnology for Biofuels | 2017
Joachim Kopka; Stefanie Schmidt; Frederik Dethloff; Nadin Pade; Susanne Berendt; Marco Schottkowski; Nico Martin; Ulf Dühring; Ekaterina Kuchmina; Heike Enke; Dan Kramer; Annegret Wilde; Martin Hagemann; Alexandra Friedrich
Archive | 2012
Kerstin Baier; Ulf Dühring; Christine Oesterhelt; Karl Ziegler; Heike Enke