Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annegret Wilde is active.

Publication


Featured researches published by Annegret Wilde.


Proceedings of the National Academy of Sciences of the United States of America | 2011

An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803

Jan Mitschke; Jens Georg; Ingeborg Scholz; Cynthia M. Sharma; Dennis Dienst; J. Bantscheff; Björn Voss; Claudia Steglich; Annegret Wilde; Jörg Vogel; Wolfgang R. Hess

There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5′ annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.


Molecular Systems Biology | 2007

Functioning and robustness of a bacterial circadian clock

Sébastien Clodong; Ulf Dühring; Luiza Kronk; Annegret Wilde; Ilka M. Axmann; Hanspeter Herzel; Markus Kollmann

Cyanobacteria are the simplest known cellular systems that regulate their biological activities in daily cycles. For the cyanobacterium Synechococcus elongatus, it has been shown by in vitro and in vivo experiments that the basic circadian timing process is based on rhythmic phosphorylation of KaiC hexamers. Despite the excellent experimental work, a full systems level understanding of the in vitro clock is still lacking. In this work, we provide a mathematical approach to scan different hypothetical mechanisms for the primary circadian oscillator, starting from experimentally established molecular properties of the clock proteins. Although optimised for highest performance, only one of the in silico‐generated reaction networks was able to reproduce the experimentally found high amplitude and robustness against perturbations. In this reaction network, a negative feedback synchronises the phosphorylation level of the individual hexamers and has indeed been realised in S. elongatus by KaiA sequestration as confirmed by experiments.


The Plant Cell | 1995

Inactivation of a Synechocystis sp strain PCC 6803 gene with homology to conserved chloroplast open reading frame 184 increases the photosystem II-to-photosystem I ratio.

Annegret Wilde; Heiko Härtel; Thomas Hübschmann; Paul Hoffmann; Sergey V. Shestakov; Thomas Börner

A gene of the unicellular cyanobacterium Synechocystis sp strain PCC 6803 that is homologous to the conserved chloroplast open reading frame orf184 has been cloned and sequenced. The nucleotide sequence of the gene predicts a protein of 184 amino acids with a calculated molecular mass of 21.5 kD and two membrane-spanning regions. Amino acid sequence analysis showed 46 to 37% homology of the cyanobacterial orf184 with tobacco orf184, rice orf185, liverwort orf184, and Euglena gracilis orf206 sequences. Two orf184-specific mutants of Synechocystis sp PCC 6803 were constructed by insertion mutagenesis. Cells of mutants showed growth characteristics similar to those of the wild type. Their pigment composition was distinctly different from the wild type, as indicated by an increase in the phycocyanin-to-chlorophyll ratio. In addition, mutants also had a two- to threefold increase in photosynthetic electron transfer rates as well as in photosystem II-to-photosystem I ratio-a phenomenon hitherto not reported for mutants with altered photosynthetic characteristics. The observed alterations in the orf184-specific mutants provide strong evidence for a functional role of the orf184 gene product in photosynthetic processes.


Journal of Biological Chemistry | 2008

Importance of the Cyanobacterial Gun4 Protein for Chlorophyll Metabolism and Assembly of Photosynthetic Complexes

Roman Sobotka; Ulf Dühring; Josef Komenda; Enrico Peter; Zdenko Gardian; Martin Tichy; Bernhard Grimm; Annegret Wilde

Gun4 is a porphyrin-binding protein that activates magnesium chelatase, a multimeric enzyme catalyzing the first committed step in chlorophyll biosynthesis. In plants, GUN4 has been implicated in plastid-to-nucleus retrograde signaling processes that coordinate both photosystem II and photosystem I nuclear gene expression with chloroplast function. In this work we present the functional analysis of Gun4 from the cyanobacterium Synechocystis sp. PCC 6803. Affinity co-purification of the FLAG-tagged Gun4 with the ChlH subunit of the magnesium chelatase confirmed the association of Gun4 with the enzyme in cyanobacteria. Inactivation of the gun4 gene abolished photoautotrophic growth of the resulting gun4 mutant strain that exhibited a decreased activity of magnesium chelatase. Consequently, the cellular content of chlorophyll-binding proteins was highly inadequate, especially that of proteins of photosystem II. Immunoblot analyses, blue native polyacrylamide gel electrophoresis, and radiolabeling of the membrane protein complexes suggested that the availability of the photosystem II antenna protein CP47 is a limiting factor for the photosystem II assembly in the gun4 mutant.


Biophysical Journal | 2008

Small RNAs Establish Delays and Temporal Thresholds in Gene Expression

Stefan Legewie; Dennis Dienst; Annegret Wilde; Hanspeter Herzel; Ilka M. Axmann

Noncoding RNAs are crucial regulators of gene expression in prokaryotes and eukaryotes, but how they affect the dynamics of transcriptional networks remains poorly understood. We analyzed the temporal characteristics of the cyanobacterial iron stress response by mathematical modeling and quantitative experimental analyses and focused on the role of a recently discovered small noncoding RNA, IsrR. We found that IsrR is responsible for a pronounced delay in the accumulation of isiA mRNA encoding the late-phase stress protein, IsiA, and that it ensures a rapid decline in isiA levels once external stress triggers are removed. These kinetic properties allow the system to selectively respond to sustained (as opposed to transient) stimuli and thus establish a temporal threshold, which prevents energetically costly IsiA accumulation under short-term stress conditions. Biological information is frequently encoded in the quantitative aspects of intracellular signals (e.g., amplitude and duration). Our simulations reveal that competitive inhibition and regulated degradation allow intracellular regulatory networks to efficiently discriminate between transient and sustained inputs.


Microbiology | 2008

The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803.

Dennis Dienst; Ulf Dühring; Hans-Joachim Mollenkopf; Jörg Vogel; Jochen R. Golecki; Wolfgang R. Hess; Annegret Wilde

The ssr3341 locus was previously suggested to encode an orthologue of the RNA chaperone Hfq in the cyanobacterium Synechocystis sp. strain PCC 6803. Insertional inactivation of this gene resulted in a mutant that was not naturally transformable and exhibited a non-phototactic phenotype compared with the wild-type. The loss of motility was complemented by reintroduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knockout mutant compared with the wild-type cells. Among the most strongly affected genes, slr1667, slr1668, slr2015, slr2016 and slr2018 stood out, as they belong to two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein SYCRP1. This suggests a link between cAMP signalling, motility and possibly the involvement of RNA-based regulation. This is believed to be the first report demonstrating a functional role of an Hfq orthologue in cyanobacteria, establishing a new factor in the control of motility.


Photochemistry and Photobiology | 2005

Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803: Role of Different Photoreceptors

Brita Fiedler; Thomas Börner; Annegret Wilde

Abstract The second cyanobacterial phytochrome Cph2 from Synechocystis sp. PCC 6803 was suggested as a part of a light-stimulated signal transduction chain inhibiting movement toward blue light. Cph2 has the two bilin binding sites, cysteine-129 and cysteine-1022, that might be involved in sensing of red/far-red and blue light, respectively. Here, we present data on wavelength dependence of the phototaxis inhibition under blue light, indicating that Cph2 itself is the photoreceptor for this blue light response. We found that inhibition of blue-light phototaxis in wild-type cells occurred below the transition point of about 470 nm. Substitution of cysteine-1022 with valine led to photomovement of the cells toward blue light (cph2− mutant phenotype). Analysis of mutants lacking cysteine-129 in the N-terminal chromophore binding domain indicated that this domain is also important for Cph2 function or folding of the protein. Furthermore, putative blue-light and phytochrome-like photoreceptors encoded by the Synechocystis sp. PCC 6803 genome were inactivated in wild-type and cph2 knockout mutant background. Our results suggest that none of these potential photoreceptors interfere with Cph2 function, although inactivation of taxD1 as well as slr1694 encoding a BLUF protein led to cells that reversed the direction of movement under blue light illumination in mutant strains of cph2.


FEBS Letters | 2004

The gun4 gene is essential for cyanobacterial porphyrin metabolism.

Annegret Wilde; Sandra Mikolajczyk; Ali Alawady; Heiko Lokstein; Bernhard Grimm

Ycf53 is a hypothetical chloroplast open reading frame with similarity to the Arabidopsis nuclear gene GUN4. In plants, GUN4 is involved in tetrapyrrole biosynthesis. We demonstrate that one of the two Synechocystis sp. PCC 6803 ycf53 genes with similarity to GUN4 functions in chlorophyll (Chl) biosynthesis as well: cyanobacterial gun4 mutant cells exhibit lower Chl contents, accumulate protoporphyrin IX and show less activity not only of Mg chelatase but also of Fe chelatase. The possible role of Gun4 for the Mg as well as Fe porphyrin biosynthesis branches in Synechocystis sp. PCC 6803 is discussed.


Biochemical Journal | 2006

Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase

Daniel Scherzinger; Sandra Ruch; Daniel P. Kloer; Annegret Wilde; Salim Al-Babili

The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography-MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting beta-apo-carotenals, (3R)-3-hydroxy-beta-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of beta-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form.


Journal of Biological Chemistry | 2007

Late assembly steps and dynamics of the cyanobacterial photosystem I

Ulf Dühring; Friedrich Ossenbühl; Annegret Wilde

The dynamics of photosystem I assembly in cyanobacteria have been addressed using in vivo pulse-chase labeling of Synechocystis sp. PCC 6803 proteins in combination with blue native polyacrylamide gel electrophoresis. The analyses indicate the existence of three different monomeric photosystem I complexes and also the high stability of photosystem I trimers. We show that in addition to a complete photosystem I monomer, containing all 11 subunits, we detected a PsaK-less monomer and a short-lived PsaL/PsaK-less complex. The latter two monomers were missing in the ycf37 mutant of Synechocystis sp. PCC 6803 that accumulates also less trimers. Pulse-chase experiments suggest that the three monomeric complexes have different functions in the biogenesis of the trimer. Based on these findings we propose a model where PsaK is incorporated in the latest step of photosystem I assembly. The PsaK-less photosystem I monomer may represent an intermediate complex that is important for the exchange of the two PsaK variants during high light acclimation. Implications of the presented data with respect to Ycf37 function are discussed.

Collaboration


Dive into the Annegret Wilde's collaboration.

Top Co-Authors

Avatar

Thomas Börner

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ulf Dühring

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Dennis Dienst

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Bernhard Grimm

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ilka M. Axmann

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Enrico Peter

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Thomas Hübschmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanspeter Herzel

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge