Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulla H. Enger is active.

Publication


Featured researches published by Ulla H. Enger.


Cardiovascular Research | 2008

Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase α2-isoform in heart failure

Fredrik Swift; Jon Arne Kro Birkeland; Nils Tovsrud; Ulla H. Enger; Jan Magnus Aronsen; William E. Louch; Ivar Sjaastad; Ole M. Sejersted

AIMS The Na+/K+-ATPase (NKA) alpha2-isoform is preferentially located in the t-tubules of cardiomyocytes and is functionally coupled to the Na+/Ca(+-exchanger (NCX) and Ca2+ regulation through intracellular Na+ concentration ([Na+]i). We hypothesized that downregulation of the NKA alpha2-isoform during congestive heart failure (CHF) disturbs the link between Na+ and Ca2+, and thus the control of cardiomyocyte contraction. METHODS AND RESULTS NKA isoform and t-tubule distributions were studied using immunocytochemistry, confocal and electron microscopy in a post-infarction rat model of CHF. Sham-operated rats served as controls. NKA and NCX currents (I NKA and I NCX) were measured and alpha2-isoform current (I NKA,alpha2) was separated from total I NKA using 0.3 microM ouabain. Detubulation of cardiomyocytes was performed to assess the presence of alpha2-isoforms in the t-tubules. In CHF, the t-tubule network had a disorganized appearance in both isolated cardiomyocytes and fixed tissue. This was associated with altered expression patterns of NKA alpha1- and alpha2-isoforms. I NKA,alpha2 density was reduced by 78% in CHF, in agreement with decreased protein expression (74%). When I NKA,alpha2 was blocked in Sham cardiomyocytes, contractile parameters converged with those observed in CHF. In Sham, abrupt activation of I NKA led to a decrease in I NCX, presumably due to local depletion of [Na+]i in the vicinity of NCX. This decrease was smaller when the alpha2-isoform was downregulated (CHF) or inhibited (ouabain), indicating that the alpha2-isoform is necessary to modulate local [Na+]i close to NCX. CONCLUSION Downregulation of the alpha2-isoform causes attenuated control of NCX activity in CHF, reducing its capability to extrude Ca2+ from cardiomyocytes.


Cardiovascular Research | 2010

Reduced SERCA2 abundance decreases the propensity for Ca2+ wave development in ventricular myocytes

Mathis K. Stokke; Karina Hougen; Ivar Sjaastad; William E. Louch; Sarah J. Briston; Ulla H. Enger; Kristin B. Andersson; Geir Christensen; D. A. Eisner; Ole M. Sejersted; Andrew W. Trafford

AIMS To describe the overall role of reduced sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) for Ca(2+) wave development. METHODS AND RESULTS SERCA2 knockout [Serca2(flox/flox) Tg(alphaMHC-MerCreMer); KO] mice allowing inducible cardiomyocyte-specific disruption of the Serca2 gene in adult mice were compared with Serca(flox/flox) (FF) control mice. Six days after Serca2 gene disruption, SERCA2 protein abundance was reduced by 53% in KO compared with FF, whereas SERCA2 activity in field-stimulated, Fluo-5F AM-loaded cells was reduced by 42%. Baseline Ca(2+) content of the sarcoplasmic reticulum (SR) and Ca(2+) transient amplitude and rate constant of decay measured in whole-cell voltage-clamped cells were decreased in KO to 75, 81, and 69% of FF values. Ca(2+) waves developed in only 31% of KO cardiomyocytes compared with 57% of FF when external Ca(2+) was raised (10 mM), although SR Ca(2+) content needed for waves to develop was 79% of FF values. In addition, waves propagated at a 15% lower velocity in KO cells. Ventricular extrasystoles (VES) occurred with lower frequency in SERCA2 KO mice (KO: 3 +/- 1 VES/h vs. FF: 8 +/- 1 VES/h) (P < 0.05 for all results). CONCLUSION Reduced SERCA2 abundance resulted in decreased amplitude and decay rate of Ca(2+) transients, reduced SR Ca(2+) content, and decreased propensity for Ca(2+) wave development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Extreme sarcoplasmic reticulum volume loss and compensatory T-tubule remodeling after Serca2 knockout

Fredrik Swift; Clara Franzini-Armstrong; Leiv Øyehaug; Ulla H. Enger; Kristin B. Andersson; Geir Christensen; Ole M. Sejersted; William E. Louch

Cardiomyocyte contraction and relaxation are controlled by Ca2+ handling, which can be regulated to meet demand. Indeed, major reduction in sarcoplasmic reticulum (SR) function in mice with Serca2 knockout (KO) is compensated by enhanced plasmalemmal Ca2+ fluxes. Here we investigate whether altered Ca2+ fluxes are facilitated by reorganization of cardiomyocyte ultrastructure. Hearts were fixed for electron microscopy and enzymatically dissociated for confocal microscopy and electrophysiology. SR relative surface area and volume densities were reduced by 63% and 76%, indicating marked loss and collapse of the free SR in KO. Although overall cardiomyocyte dimensions were unaltered, total surface area was increased. This resulted from increased T-tubule density, as revealed by confocal images. Fourier analysis indicated a maintained organization of transverse T-tubules but an increased presence of longitudinal T-tubules. This demonstrates a remarkable plasticity of the tubular system in the adult myocardium. Immunocytochemical data showed that the newly grown longitudinal T-tubules contained Na+/Ca2+-exchanger proximal to ryanodine receptors in the SR but did not contain Ca2+-channels. Ca2+ measurements demonstrated a switch from SR-driven to Ca2+ influx-driven Ca2+ transients in KO. Still, SR Ca2+ release constituted 20% of the Ca2+ transient in KO. Mathematical modeling suggested that Ca2+ influx via Na+/Ca2+-exchange in longitudinal T-tubules triggers release from apposing ryanodine receptors in KO, partially compensating for reduced SERCA by allowing for local Ca2+ release near the myofilaments. T-tubule proliferation occurs without loss of the original ordered transverse orientation and thus constitutes the basis for compensation of the declining SR function without structural disarrangement.


Cell Calcium | 2011

Cardiomyocyte-specific disruption of Serca2 in adult mice causes sarco(endo)plasmic reticulum stress and apoptosis

Xiu Hua Liu; Zhen Ying Zhang; Kristin B. Andersson; Cathrine Husberg; Ulla H. Enger; M. G. Raeder; Geir Christensen; William E. Louch

Reduced sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase (SERCA2) contributes to the impaired cardiomyocyte Ca(2+) homeostasis observed in heart failure. We hypothesized that a reduction in SERCA2 also elicits myocardial ER/SR stress responses, including unfolded protein responses (UPR) and cardiomyocyte apoptosis, which may additionally contribute to the pathophysiology of this condition. Left ventricular myocardium from mice with cardiomyocyte-specific tamoxifen-inducible disruption of Serca2 (SERCA2 KO) was compared with aged-matched controls. In SERCA2 KO hearts, SERCA2 protein levels were markedly reduced to 2% of control values at 7 weeks following tamoxifen treatment. Serca2 disruption caused increased abundance of the ER stress-associated proteins CRT, GRP78, PERK, and eIF2α and increased phosphorylation of PERK and eIF2α, indicating UPR induction. Pro-apoptotic signaling was also activated in SERCA2 KO, as the abundance of CHOP, caspase 12, and Bax was increased. Indeed, TUNEL staining revealed an increased fraction of cardiomyocytes undergoing apoptosis in SERCA2 KO. ER-Tracker staining additionally revealed altered ER structure. These findings indicate that reduction in SERCA2 protein abundance is associated with marked ER/SR stress in cardiomyocytes, which induces UPR, apoptosis, and ER/SR structural alterations. This suggests that reduced SERCA2 abundance or function may contribute to the phenotype of heart failure also through induction of ER/SR stress responses.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Cre-loxP DNA recombination is possible with only minimal unspecific transcriptional changes and without cardiomyopathy in Tg(αMHC-MerCreMer) mice

Karina Hougen; Jan Magnus Aronsen; Mathis K. Stokke; Ulla H. Enger; Ståle Nygård; Kristin B. Andersson; Geir Christensen; Ole M. Sejersted; Ivar Sjaastad

Cre-loxP technology for conditional gene inactivation is a powerful tool in cardiovascular research. Induction of gene inactivation can be carried out by per oral or intraperitoneal tamoxifen administration. Unintended transient cardiomyopathy following tamoxifen administration for gene inactivation has recently been reported. We aimed to develop a protocol for tamoxifen-induced gene inactivation with minimal effects on gene transcription and in vivo cardiac function, allowing studies of acute loss of the targeted gene. In mRNA microarrays, 35% of the 34,760 examined genes were significantly regulated in MCM(+/0) compared with wild type. In MCM(+/0), we found a correlation between tamoxifen dose and degree of gene regulation. Comparing one and four intraperitoneal injections of 40 mg·kg(-1)·day(-1) tamoxifen, regulated genes were reduced to 1/5 in the single injection group. Pronounced alteration in protein abundance and acute cardiomyopathy were observed after the four-injection protocols but not the one-injection protocol. For verification of gene inactivation following one injection of tamoxifen, this protocol was applied to MCM(+/0)/Serca2(fl/fl). Serca2 mRNA levels and protein abundance followed the same pattern of decline with one and four tamoxifen injections. The presence of the MCM transgene induced major alterations of gene expression while administration of tamoxifen induced additional but less gene regulation. Thus nonfloxed MCM(+/0) should be considered as controls for mice that carry both a floxed gene of interest and the MCM transgene. One single tamoxifen injection administered to MCM(+/0)/Serca2(fl/fl) was sufficient for target gene inactivation, without acute cardiomyopathy, allowing acute studies subsequent to gene inactivation.


Journal of Biological Chemistry | 2016

Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman

Tandekile Lubelwana Hafver; Kjetil Hodne; Pimthanya Wanichawan; Jan Magnus Aronsen; Bjørn Dalhus; Per Kristian Lunde; Marianne Lunde; Marita Martinsen; Ulla H. Enger; William Fuller; Ivar Sjaastad; William E. Louch; Ole M. Sejersted; Cathrine R. Carlson

The sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca2+ homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na+/K+-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca2+ binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5–8Φ1Φ2-X8–9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.


Cardiovascular Research | 2007

The Na+/K+-ATPase α2-isoform regulates cardiac contractility in rat cardiomyocytes

Fredrik Swift; Nils Tovsrud; Ulla H. Enger; Ivar Sjaastad; Ole M. Sejersted


American Journal of Physiology-heart and Circulatory Physiology | 2007

Serotonin increases L-type Ca2+ current and SR Ca2+ content through 5-HT4 receptors in failing rat ventricular cardiomyocytes

Jon Arne Kro Birkeland; Fredrik Swift; Nils Tovsrud; Ulla H. Enger; Per Kristian Lunde; Eirik Qvigstad; Finn Olav Levy; Ole M. Sejersted; Ivar Sjaastad


Biophysical Journal | 2015

PP1 Anchoring onto NCX1 Facilitates Dephosphorylation of P-SER68-PLM

Tandekile Lubelwana Hafver; Pimthanya Wanichawan; Kjetil Hodne; Jan Magnus Aronsen; Bjørn Dalhus; Marianne Lunde; Ulla H. Enger; Marita Mathisen; William Fuller; Ivar Sjaastad; Ole M. Sejersted; Cathrine R. Carlson


Biophysical Journal | 2015

Ventricular Wall Stress Predicts Disruption of Cardiomyocyte T-Tubule Structure and Ca2+ Homeostasis across the Infarcted Heart

Michael Frisk; Emil K.S. Espe; Åsmund T. Røe; J Magnus Aronsen; Lili Zhang; Ulla H. Enger; Ole M. Sejersted; Ivar Sjaastad; William E. Louch

Collaboration


Dive into the Ulla H. Enger's collaboration.

Top Co-Authors

Avatar

Ivar Sjaastad

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge