Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Baxa is active.

Publication


Featured researches published by Ulrich Baxa.


Science | 2013

Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody.

Jason S. McLellan; Man Chen; Sherman Leung; Kevin W. Graepel; Xiulian Du; Yongping Yang; Tongqing Zhou; Ulrich Baxa; Etsuko Yasuda; Tim Beaumont; Azad Kumar; Kayvon Modjarrad; Zi-Zheng Zheng; Min Zhao; Ningshao Xia; Peter D. Kwong; Barney S. Graham

Building Better Vaccines Vaccines are one of the most effective tools to protect against infectious diseases. Unfortunately, vaccines for diseases with the highest global health burdens, such as HIV, malaria, and tuberculosis, are not yet available. Koff et al. (p. 1064) review the latest advances in vaccine development and why these particular diseases remain such a challenge. Respiratory syncytial virus (RSV) is a serious cause of morbidity and mortality in infants and young children worldwide. Although a prophylactic antibody is available for children at high risk, a vaccine is much needed. As a potential step toward this goal, McLellan et al. (p. 1113, published online 25 April) solved the cocrystal structure of a neutralizing antibody (D25) bound to the prefusion F protein of RSV. Knowledge of the structure of the prefusion protein should help to guide vaccine design and the development of additional therapeutics. The prefusion conformation of respiratory syncytial virus protein F has been trapped by a neutralizing antibody. The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site Ø. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.


Science | 2013

Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus.

Jason S. McLellan; Man Chen; M. Gordon Joyce; Mallika Sastry; Guillaume Stewart-Jones; Yongping Yang; Baoshan Zhang; Lei Chen; Sanjay Srivatsan; Anqi Zheng; Tongqing Zhou; Kevin W. Graepel; Azad Kumar; Syed M. Moin; Jeffrey C. Boyington; Gwo Yu Chuang; Cinque Soto; Ulrich Baxa; Arjen Q. Bakker; Hergen Spits; Tim Beaumont; Zi-Zheng Zheng; Ningshao Xia; Sung Youl Ko; John Paul Todd; Srinivas S. Rao; Barney S. Graham; Peter D. Kwong

Designer Vaccine Respiratory syncytial virus (RSV) is one of the last remaining childhood diseases without an approved vaccine. Using a structure-based approach, McLellan et al. (p. 592) designed over 150 fusion glycoprotein variants, assessed their antibody reactivity, determined crystal structures of stabilized variants, and measured their ability to elicit protective responses. This approach yielded an immunogen that elicits higher protective responses than the postfusion form of the fusion glycoprotein, which is one of the current leading RSV vaccine candidates entering clinical trials. Importantly, highly protective responses were elicited in both mice and macaques. Molecular engineering of a childhood virus surface protein significantly improves protective responses in mice and macaques. Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site Ø, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site Ø when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site Ø–stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.


The EMBO Journal | 2005

Prion generation in vitro: amyloid of Ure2p is infectious

Andreas Brachmann; Ulrich Baxa; Reed B. Wickner

[URE3] is a prion (infectious protein) of the Ure2 protein of yeast. In vitro, Ure2p can form amyloid filaments, but direct evidence that these filaments constitute the infectious form is still missing. Here we demonstrate that recombinant Ure2p converted into amyloid can infect yeast cells lacking the prion. Infection produced a variety of [URE3] variants. Extracts of [URE3] strains, as well as amyloid of Ure2p formed in an extract‐primed reaction could transmit to uninfected cells the [URE3] variant present in the cells from which the extracts were made. Infectivity and determinant of [URE3] variants resided within the N‐terminal 65 amino acids of Ure2p. Notably, we could show that amyloid filaments of recombinant Ure2p are nearly as infectious per mass of Ure2p as extracts of [URE3] strains. Sizing experiments indicated that infectious particles in vitro and in vivo were >20 nm in diameter, suggesting that they were amyloid filaments and not smaller oligomeric structures. Our data indicate that there is no substantial difference between filaments formed in vivo and in vitro.


Journal of Molecular Biology | 1997

Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage

Stefan Steinbacher; Stefan Miller; Ulrich Baxa; Nediljko Budisa; Andrej Weintraub; Robert Seckler; Robert Huber

Abstract The tailspike protein of Salmonella phage P22 is a viral adhesion protein with both receptor binding and destroying activities. It recognises the O-antigenic repeating units of cell surface lipopolysaccharide of serogroup A, B and D1 as receptor, but also inactivates its receptor by endoglycosidase (endorhamnosidase) activity. In the final step of bacteriophage P22 assembly six homotrimeric tailspike molecules are non-covalently attached to the DNA injection apparatus, mediated by their N-terminal, head-binding domains. We report the crystal structure of the head-binding domain of P22 tailspike protein at 2.3 Å resolution, solved with a recombinant telluromethionine derivative and non-crystallographic symmetry averaging. The trimeric dome-like structure is formed by two perpendicular β-sheets of five and three strands, respectively in each subunit and caps a three-helix bundle observed in the structure of the C-terminal receptor binding and cleaving fragment, reported here after full refinement at 1.56 Å resolution. In the central part of the receptor binding fragment, three parallel β-helices of 13 complete turns are associated side-by-side, while the three polypeptide strands merge into a single domain towards their C termini, with close interdigitation at the junction to the β-helix part. Complex structures with receptor fragments from S. typhimurium, S. enteritidis and S. typhi253Ty determined at 1.8 Å resolution are described in detail. Insertions into the β-helix form the O-antigen binding groove, which also harbours the active site residues Asp392, Asp395 and Glu359. In the intact structure of the tailspike protein, head-binding and receptor-binding parts are probably linked by a flexible hinge whose function may be either to deal with shearing forces on the exposed, 150 Å long tailspikes or to allow them to bend during the infection process.


Nature Structural & Molecular Biology | 2015

Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

Young Do Kwon; Marie Pancera; Priyamvada Acharya; Ivelin S. Georgiev; Emma T. Crooks; Jason Gorman; M. Gordon Joyce; Xiaochu Ma; Sandeep Narpala; Cinque Soto; Daniel S. Terry; Yongping Yang; Tongqing Zhou; Goran Ahlsen; Robert T. Bailer; Michael Chambers; Gwo Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Mark A. Hallen; Adam Harned; Tatsiana Kirys; Mark K. Louder; Sijy O'Dell; Gilad Ofek; Keiko Osawa; Madhu Prabhakaran; Mallika Sastry; Guillaume Stewart-Jones; Jonathan Stuckey

As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.


Molecular and Cellular Biology | 2004

Scrambled Prion Domains Form Prions and Amyloid

Eric D. Ross; Ulrich Baxa; Reed B. Wickner

ABSTRACT The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein

Ulrich Baxa; Vladislav V. Speransky; Alasdair C. Steven; Reed B. Wickner

The [URE3] infectious protein (prion) of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The C-terminal domain of Ure2p controls nitrogen catabolism by complexing with the transcription factor, Gln3p, whereas the asparagine-rich N-terminal “prion” domain is responsible for amyloid filament formation (prion conversion). On filament formation, Ure2p is inactivated, reflecting either a structural change in the C-terminal domain or steric blocking of its interaction with Gln3p. We fused the prion domain with four proteins whose activities should not be sterically impeded by aggregation because their substrates are very small: barnase, carbonic anhydrase, glutathione S-transferase, and green fluorescent protein. All formed amyloid filaments in vitro, whose diameters increased with the mass of the appended enzyme. The helical repeat lengths were consistent within a single filament but varied with the construct and between filaments from a single construct. CD data suggest that, in the soluble fusion proteins, the prion domain has no regular secondary structure, whereas earlier data showed that in filaments, it is virtually all β-sheet. In filaments, the activity of the appended proteins was at most mildly reduced, when substrate diffusion effects were taken into account, indicating that they retained their native structures. These observations suggest that the amyloid content of these filaments is confined to their prion domain-containing backbones and imply that Ure2p is inactivated in [URE3] cells by a steric blocking mechanism.


Journal of Biological Chemistry | 2003

Architecture of Ure2p Prion Filaments THE N-TERMINAL DOMAINS FORM A CENTRAL CORE FIBER

Ulrich Baxa; Kimberly L. Taylor; Joseph S. Wall; Martha N. Simon; Naiqian Cheng; Reed B. Wickner; Alasdair C. Steven

The [URE3] prion is an inactive, self-propagating, filamentous form of the Ure2 protein, a regulator of nitrogen catabolism in yeast. The N-terminal “prion” domain of Ure2p determines its in vivo prion properties and in vitro amyloid-forming ability. Here we determined the overall structures of Ure2p filaments and related polymers of the prion domain fused to other globular proteins. Protease digestion of 25-nm diameter Ure2p filaments trimmed them to 4-nm filaments, which mass spectrometry showed to be composed of prion domain fragments, primarily residues ∼1–70. Fusion protein filaments with diameters of 14–25 nm were also reduced to 4-nm filaments by proteolysis. The prion domain transforms from the most to the least protease-sensitive part upon filament formation in each case, implying that it undergoes a conformational change. Intact filaments imaged by cryo-electron microscopy or after vanadate staining by scanning transmission electron microscopy (STEM) revealed a central 4-nm core with attached globular appendages. STEM mass per unit length measurements of unstained filaments yielded 1 monomer per 0.45 nm in each case. These observations strongly support a unifying model whereby subunits in Ure2p filaments, as well as in fusion protein filaments, are connected by interactions between their prion domains, which form a 4-nm amyloid filament backbone, surrounded by the corresponding C-terminal moieties.


Journal of Biological Chemistry | 2012

Fibril Structure of Human Islet Amyloid Polypeptide

Sahar Bedrood; Yiyu Li; Jose Mario Isas; Balachandra G. Hegde; Ulrich Baxa; Ian S. Haworth; Ralf Langen

Background: Human islet amyloid polypeptide (hIAPP) fibrils of unknown structure are formed in type 2 diabetes. Results: A hIAPP fibril structure was derived from EPR data, electron microscopy, and computer modeling. Conclusion: The fibril is a left-handed helix that contains hIAPP monomers in a staggered conformation. Significance: The results provide the basis for therapeutic prevention of fibril formation and growth. Misfolding and amyloid fibril formation by human islet amyloid polypeptide (hIAPP) are thought to be important in the pathogenesis of type 2 diabetes, but the structures of the misfolded forms remain poorly understood. Here we developed an approach that combines site-directed spin labeling with continuous wave and pulsed EPR to investigate local secondary structure and to determine the relative orientation of the secondary structure elements with respect to each other. These data indicated that individual hIAPP molecules take up a hairpin fold within the fibril. This fold contains two β-strands that are much farther apart than expected from previous models. Atomistic structural models were obtained using computational refinement with EPR data as constraints. The resulting family of structures exhibited a left-handed helical twist, in agreement with the twisted morphology observed by electron microscopy. The fibril protofilaments contain stacked hIAPP monomers that form opposing β-sheets that twist around each other. The two β-strands of the monomer adopt out-of-plane positions and are staggered by about three peptide layers (∼15 Å). These results provide a mechanism for hIAPP fibril formation and could explain the remarkable stability of the fibrils. Thus, the structural model serves as a starting point for understanding and preventing hIAPP misfolding.


The FASEB Journal | 2010

β arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils

Andrey V. Kajava; Ulrich Baxa; Alasdair C. Steven

Amyloid fibrils are filamentous protein aggregates that accumulate in diseases such as Alzheimers or type II diabetes. The amyloid‐forming protein is disease specific. Amyloids may also be formed in vitro from many other proteins, after first denaturing them. Unlike the diverse native folds of these proteins, their amyloids are fundamentally similar in being rigid, smooth‐sided, and cross‐β‐structured, that is, with β strands running perpendicular to the fibril axis. In the absence of high‐resolution fibril structures, increasingly credible models are being derived by integrating data from a crossfire of experimental techniques. Most current models of disease‐related amyloids invoke “β arcades,” columnar structures produced by in‐register stacking of “β arches.” A β arch is a strand‐turn‐strand motif in which the two β strands interact via their side chains, not via the polypeptide backbone as in a conventional β hairpin. Crystal structures of β‐solenoids, a class of proteins with amyloid‐like properties, offer insight into the β‐arc turns found in β arches. General conformational and thermodynamic considerations suggest that complexes of 2 or more β arches may nucleate amyloid fibrillogenesis in vivo. The apparent prevalence of β arches and their components have implications for identifying amyloidogenic sequences, elucidating fibril polymorphisms, predicting the locations and conformations of β arcs within amyloid fibrils, and refining existing fibril models.—Kajava, A. V., Baxa, U., Steven, A. C. β arcades: recurring motifs in naturally occurring and disease‐related amyloid fibrils. FASEB J. 24, 1311–1319 (2010). www.fasebj.org

Collaboration


Dive into the Ulrich Baxa's collaboration.

Top Co-Authors

Avatar

Alasdair C. Steven

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongping Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aliaksandr Druz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Reed B. Wickner

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Baoshan Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ivelin S. Georgiev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tongqing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

M. Gordon Joyce

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marie Pancera

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge