Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Eckhard is active.

Publication


Featured researches published by Ulrich Eckhard.


Science Signaling | 2013

Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation.

auf dem Keller U; Anna Prudova; Ulrich Eckhard; Barbara Fingleton; Christopher M. Overall

Quantitative proteomic analysis of inflamed mouse skin reveals mediators of the inflammatory response in vivo. Taking a Snapshot of Inflammation Studies of inflammatory mediators, such as proteases and their inhibitors, often involve in vitro analyses or focus on a single target in vivo. However, given the complex interplay among all of the players in the inflammatory response, a system-wide analysis would provide a better understanding of how each factor works in its natural environment. With their approach of quantitatively labeling the N termini of proteins (both uncleaved and after protease-mediated cleavage) from inflamed mouse skin tissue, auf dem Keller et al. provide a snapshot of the inflammatory response in vivo. Their analysis identified previously uncharacterized cleavage events within the complement cascade and highlighted a role for matrix metalloproteinase 2, which contributed to increased blood vessel permeability during inflammation. Together, these data provide a system-wide proteolytic fingerprint of skin inflammation and generate functional hypotheses that warrant further investigation. During inflammation, vascular permeability is increased by various proteolytic events, such as the generation of bradykinin, that augment local tissue responses by enabling tissue penetration of serum proteins, including complement and acute-phase proteins. Proteases also govern inflammatory responses by processing extracellular matrix proteins and soluble bioactive mediators. We quantified changes in the proteome and the nature of protein amino termini (the N-terminome) and the altered abundance of murine proteases and inhibitors during skin inflammation. Through analysis of the N-terminome by iTRAQ-TAILS, we identified cotranslational and posttranslational αN-acetylation motifs, quantitative increases in protein abundance, and qualitative changes in the proteolytic signature during inflammation. Of the proteins identified in normal skin, about half were cleaved, and phorbol ester–induced inflammation increased the proportion of cleaved proteins, including chemokines and complement proteins, that were processed at previously uncharacterized sites. In response to phorbol ester–induced inflammation, mice deficient in matrix metalloproteinase 2 (MMP2) showed reduced accumulation of serum proteins in the skin and exhibited different proteolytic networks from those of wild-type mice. We found that the complement 1 (C1) inhibitor attenuated the increase in serum protein accumulation in inflamed skin. Cleavage and inactivation of the C1 inhibitor by MMP2 increased complement activation and bradykinin generation in wild-type mice, leading to increased vessel permeability during inflammation, which was diminished in Mmp2−/− mice. Thus, our systems-level analysis of proteolysis dissected cleavage events associated with skin inflammation and demonstrated that loss of a single protease could perturb the proteolytic signaling network and enhance inflammation.


Journal of Molecular Biology | 2012

Crystallographically Mapped Ligand Binding Differs in High and Low IgE Binding Isoforms of Birch Pollen Allergen Bet v 1

Stefan Kofler; Claudia Asam; Ulrich Eckhard; Michael Wallner; Fatima Ferreira; Hans Brandstetter

The ability of pathogenesis-related proteins of family 10 to bind a broad spectrum of ligands is considered to play a key role for their physiological and pathological functions. In particular, Bet v 1, an archetypical allergen from birch pollen, is described as a highly promiscuous ligand acceptor. However, the detailed recognition mechanisms, including specificity factors discriminating binding properties of naturally occurring Bet v 1 variants, are poorly understood. Here, we report crystal structures of Bet v 1 variants in complex with an array of ligands at a resolution of up to 1.2 Å. Residue 30 within the hydrophobic pocket not only discriminates in high and low IgE binding Bet v 1 isoforms but also induces a drastic change in the binding mode of the model ligand deoxycholate. Ternary crystal structure complexes of Bet v 1 with several ligands together with the fluorogenic reporter 1-anilino-8-naphthalene sulfonate explain anomalous fluorescence binding curves obtained from 1-anilino-8-naphthalene sulfonate displacement assays. The structures reveal key interaction residues such as Tyr83 and rationalize both the binding specificity and promiscuity of the so-called hydrophobic pocket in Bet v 1. The intermolecular interactions of Bet v 1 reveal an unexpected complexity that will be indispensable to fully understand its roles within the physiological and allergenic context.


Nature Methods | 2015

LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification

Pitter F. Huesgen; Philipp F. Lange; Lindsay D. Rogers; Nestor Solis; Ulrich Eckhard; Oded Kleifeld; Theodoros Goulas; F. Xavier Gomis-Rüth; Christopher M. Overall

To improve proteome coverage and protein C-terminal identification, we characterized the Methanosarcina acetivorans thermophilic proteinase LysargiNase, which cleaves before lysine and arginine up to 55 °C. Unlike trypsin, LysargiNase-generated peptides had N-terminal lysine or arginine residues and fragmented with b ion–dominated spectra. This improved protein C terminal–peptide identification and several arginine-rich phosphosite assignments. Notably, cleavage also occurred at methylated or dimethylated lysine and arginine, facilitating detection of these epigenetic modifications.


Nature Structural & Molecular Biology | 2011

Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis

Ulrich Eckhard; Esther Schönauer; Dorota Nüss; Hans Brandstetter

Collagen constitutes one-third of body protein in humans, reflecting its extensive role in health and disease. Of similar importance, therefore, are the idiosyncratic proteases that have evolved for collagen remodeling. The most efficient collagenases are those that enable clostridial bacteria to colonize their host tissues; but despite intense study, the structural and mechanistic basis of these enzymes has remained elusive. Here we present the crystal structure of collagenase G from Clostridium histolyticum at 2.55-Å resolution. By combining the structural data with enzymatic and mutagenesis studies, we derive a conformational two-state model of bacterial collagenolysis, in which recognition and unraveling of collagen microfibrils into triple helices, as well as unwinding of the triple helices, are driven by collagenase opening and closing.


Journal of Proteomics | 2014

Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen

Ulrich Eckhard; Pitter F. Huesgen; Hans Brandstetter; Christopher M. Overall

Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified > 100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1′, proline at P2 and P2′, and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. Biological significance We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of specific test substrates and selective inhibitors. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?


Biochemical Journal | 2014

Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity

Giada Marino; Pitter F. Huesgen; Ulrich Eckhard; Christopher M. Overall; Wolfgang P. Schröder; Christiane Funk

MMPs (matrix metalloproteases) are a family of zinc-dependent endopeptidases widely distributed throughout all kingdoms of life. In mammals, MMPs play key roles in many physiological and pathological processes, including remodelling of the extracellular matrix. In the genome of the annual plant Arabidopsis thaliana, five MMP-like proteins (At-MMPs) are encoded, but their function is unknown. Previous work on these enzymes was limited to gene expression analysis, and so far proteolytic activity has been shown only for At1-MMP. We expressed and purified the catalytic domains of all five At-MMPs as His-tagged proteins in Escherichia coli cells to delineate the biochemical differences and similarities among the Arabidopsis MMP family members. We demonstrate that all five recombinant At-MMPs are active proteases with distinct preferences for different protease substrates. Furthermore, we performed a family-wide characterization of their biochemical properties and highlight similarities and differences in their cleavage site specificities as well as pH- and temperature-dependent activities. Detailed analysis of their sequence specificity using PICS (proteomic identification of protease cleavage sites) revealed profiles similar to human MMPs with the exception of At5-MMP; homology models of the At-MMP catalytic domains supported these results. Our results suggest that each At-MMP may be involved in different proteolytic processes during plant growth and development.


PLOS ONE | 2014

Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries.

Olivier Barré; Antoine Dufour; Ulrich Eckhard; Reinhild Kappelhoff; François Béliveau; Richard Leduc; Christopher M. Overall

Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.


Journal of Biological Chemistry | 2013

Structural Basis for Activity Regulation and Substrate Preference of Clostridial Collagenases G, H, and T.

Ulrich Eckhard; Esther Schönauer; Hans Brandstetter

Background: Bacterial collagenases degrade collagen substrates with high efficiency yet varying specificity. Results: The newly identified calcium site, aspartate switch, and conformational selectivity filter regulate substrate access to the active sites of these collagenases. Conclusion: The unanticipated dynamics of the substrate recognition sites plus zinc occupancy combine to tune the enzymatic activity. Significance: The crystal structures provide a rational framework to understand and optimize the isoform-dependent collagenase activities. Clostridial collagenases are among the most efficient enzymes to degrade by far the most predominant protein in the biosphere. Here we present crystal structures of the peptidases of three clostridial collagenase isoforms (ColG, ColH, and ColT). The comparison of unliganded and liganded structures reveals a quaternary subdomain dynamics. In the unliganded ColH structure, this globular dynamics is modulated by an aspartate switch motion that binds to the catalytic zinc. We further identified a calcium binding site in proximity to the catalytic zinc. Both ions are required for full activity, explaining why calcium critically affects the enzymatic activity of clostridial collagenases. Our studies further reveal that loops close to the active site thus serve as characteristic substrate selectivity filter. These elements explain the distinct peptidolytic and collagenolytic activities of these enzymes and provide a rational framework to engineer collagenases with customized substrate specificity as well as for inhibitor design.


Biochimie | 2016

Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.

Ulrich Eckhard; Giada Marino; Georgina S. Butler; Christopher M. Overall

Proteolytic processing is a pervasive and irreversible post-translational modification that expands the protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional proteomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a comprehensive understanding of a proteins function in biological environments since protease cleavage frequently results in altered protein activity and localization. Proteases often process other proteases and protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to affect other molecular networks and cellular processes in physiological and pathological conditions. This review is aimed at researchers with a keen interest in state of the art systems level positional proteomic approaches that: (i) enable the study of complex protease-protease, protease-inhibitor and protease-substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We predict that these methodologies will be an integral part of emerging precision medicine initiatives that aim to customize healthcare, converting reactive medicine into a personalized and proactive approach, improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of Substrates) and COFRADIC (COmbined FRActional DIagonal Chromatography) will be fundamental for individual and comprehensive assessment of health and disease.


Biological Chemistry | 2009

Biochemical characterization of the catalytic domains of three different clostridial collagenases

Ulrich Eckhard; Esther Schönauer; Paulina Ducka; Peter Briza; Dorota Nüss; Hans Brandstetter

Abstract Clostridial collagenases are used for a broad spectrum of biotechnological applications and represent prime target candidates for both therapy and diagnosis of clostridial infections. In this study, we biochemically characterized the catalytic domains of three clostridial collagenases, collagenase G (ColG) and H (ColH) from Clostridium histolyticum, and collagenase T (ColT) from C. tetani. All protein samples showed activity against a synthetic peptidic substrate (furylacryloyl-Leu-Gly-Pro-Ala, FALGPA) with ColH showing the highest overall activity and highest substrate affinity. Whereas the K m values of all three enzymes were within the same order of magnitude, the turnover rate k cat of ColG decreased 50- to 150-fold when compared to ColT and ColH. It is noteworthy that the protein N-terminus significantly impacts their substrate affinity and substrate turnover as well as their inhibition profile with 1,10-phenanthroline. These findings were complemented with the discovery of a strictly conserved double-glycine motif, positioned 28 amino acids upstream of the HEXXH zinc binding site, which is critical for enzymatic activity. These observations have consequences with respect to the topology of the N-terminus relative to the active site as well as possible activation mechanisms.

Collaboration


Dive into the Ulrich Eckhard's collaboration.

Top Co-Authors

Avatar

Christopher M. Overall

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Giada Marino

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Prudova

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Georgina S. Butler

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Pitter F. Huesgen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Simon R. Abbey

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Dufour

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge