Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrich Kück is active.

Publication


Featured researches published by Ulrich Kück.


Molecular Genetics and Genomics | 2005

Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora

Minou Nowrousian; Carol S. Ringelberg; Jay C. Dunlap; Jennifer J. Loros; Ulrich Kück

The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.


Gene | 2001

Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes

Stefanie Pöggeler; Ulrich Kück

Detection of pheromone genes in filamentous ascomycetes implicated the presence of pheromone receptor genes. Similar to yeasts and basidiomycetes, these might be involved in a G-protein triggered signal transduction pathway during mating. We have identified two pheromone receptor genes, named pre1 and pre2, in the genome of the heterothallic filamentous ascomycete Neurospora crassa and the closely related homothallic Sordaria macrospora. The deduced pre1 gene product is a putative seven-transmembrane protein, which displays a high-level amino acid identity with the a-factor receptor Ste3p of Saccharomyces cerevisiae, and is also homologous to lipopeptide pheromone receptors of basidiomycetes. The deduced pre2 product displays significant sequence similarity with the S. cerevisiae STE2 gene product, the alpha-factor receptor. Pair-wise comparisons between pheromone receptor genes of N. crassa and S. macrospora revealed an extremely low degree of nucleotide conservation in these genes, suggesting that they evolved very rapidly. The two genes are transcriptionally expressed in both N. crassa and S. macrospora. Northern and reverse transcription-polymerase chain reaction analyses indicate that in N. crassa, expression of the receptor genes does not occur in a mating type specific manner. Thus, filamentous ascomycetes appear to posses and express pheromone receptor genes.


Molecular Genetics and Genomics | 1978

Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina.

Ulf Stahl; Paul A. Lemke; Paul Tudzynski; Ulrich Kück; Karl Esser

SummaryThe existece of plasmid like DNA was demonstrated in senescent mycelia of Podospora anserina (strain s) by biophysical and electronmicroscopic methods. According to their contour length of about 1.4 and 2.7 μm respectively the molecular weight for the monomer is in the range of 3·106.


PLOS Genetics | 2010

De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis

Minou Nowrousian; Jason E. Stajich; Meiling Chu; Ines Engh; Eric Espagne; Karen J. Halliday; Jens Kamerewerd; Frank Kempken; Birgit Knab; Hsiao-Che Kuo; Heinz D. Osiewacz; Stefanie Pöggeler; Nick D. Read; Stephan Seiler; Kristina M. Smith; Denise Zickler; Ulrich Kück; Michael Freitag

Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.


Cell | 1988

Mutant Phenotypes Support a Trans-Splicing Mechanism for the Expression of the Tripartite psaA Gene in the C. reinhardtii Chloroplast

Yves Choquet; Michel Goldschmidt-Clermont; Jacqueline Girard-Bascou; Ulrich Kück; Pierre Bennoun; Jean-David Rochaix

The chloroplast psaA gene of the green unicellular alga Chlamydomonas reinhardtii consists of three exons that are transcribed from different strands. Analysis of numerous nuclear and chloroplast mutants that are deficient in photosystem I activity reveals that roughly one-quarter of them are specifically affected in psaA mRNA maturation. These mutants can be grouped into three phenotypic classes, based on their inability to perform either one or both splicing reactions. The data indicate that the three exons are transcribed independently as precursors which are normally assembled in trans and that the splicing reactions can occur in either order. While some chloroplast mutations could act in cis, the nuclear mutations that fall into several complementation groups probably affect factors specifically required for assembling psaA mRNA.


The EMBO Journal | 1987

Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing.

Ulrich Kück; Yves Choquet; Michel Schneider; Michel Dron; Pierre Bennoun

The two homologous genes for the P700 chlorophyll a‐apoproteins (ps1A1 and ps1A2) are encoded by the plastom in the green alga Chlamydomonas reinhardii. The structure and organization of the two genes were determined by comparison with the homologous genes from maize using data from heterologous hybridizations as well as from DNA and RNA sequencing. While the ps1A2 (736 codons) gene shows a continuous gene organization, the ps1A1 (754 codons) gene possesses some unusual features. The discontinuous gene is split into three separate exons which are scattered around the circular chloroplast genome. Exon 1 (86 bp) is separated by ∼50 kb from exon 2 (198 bp), which is located ∼ 90 kb apart from exon 3 (1984 bp). All exons are flanked by intronic sequences of group II. Transcription analysis reveals that the ps1A2 gene hybridizes with a 2.8‐kb transcript, while all exon regions of the ps1A1 gene are homologous to a mature mRNA of 2.7 kb. From our data we conclude that the three distantly separated exonic sequences of the ps1A1 gene constitute a functional gene which probably operates by a trans‐splicing mechanism.


Applied Microbiology and Biotechnology | 2010

New tools for the genetic manipulation of filamentous fungi

Ulrich Kück; Birgit Hoff

Filamentous fungi have a long-standing tradition as industrial producers of primary and secondary metabolites. Initially, industrial scientists selected production strains from natural isolates that fulfilled both microbiological and technical requirements for economical production processes. Subsequently, genetically modified strains with novel properties were obtained through traditional strain improvement programs relying mostly on random mutagenesis. In recent years, however, recombinant technologies have contributed significantly to improve the capacities of production and have also allowed the design of genetically manipulated strains. These major advances were only made possible by basic research bringing deeper and novel insights into cellular and molecular fungal processes, thus allowing the design of genetically manipulated strains. This better understanding of fundamental genetic processes in model organisms has resulted in the design and generation of new experimental transformation strategies to manipulate specifically gene expression and function in diverse filamentous fungi, including those having a biotechnical significance. In this review, we summarize recent developments in the application of homologous DNA recombination and RNA interference to manipulate fungal recipients for further improvement of physiology and development in regards to biotechnical and pharmaceutical applications.


Applied and Environmental Microbiology | 2007

A Homologue of the Aspergillus velvet Gene Regulates both Cephalosporin C Biosynthesis and Hyphal Fragmentation in Acremonium chrysogenum

Jacqueline Dreyer; Heiko Eichhorn; Ernst Friedlin; Hubert Kürnsteiner; Ulrich Kück

ABSTRACT The Aspergillus nidulans velvet (veA) gene encodes a global regulator of gene expression controlling sexual development as well as secondary metabolism. We have identified the veA homologue AcveA from Acremonium chrysogenum, the major producer of the β-lactam antibiotic cephalosporin C. Two different disruption strains as well as the corresponding complements were generated as a prelude to detailed functional analysis. Northern hybridization and quantitative real-time PCR clearly indicate that the nucleus-localized AcVEA polypeptide controls the transcriptional expression of six cephalosporin C biosynthesis genes. The most drastic reduction in expression is seen for cefEF, encoding the deacetoxycephalosporine/deacetylcephalosporine synthetase. After 120 h of growth, the cefEF transcript level is below 15% in both disruption strains compared to the wild type. These transcriptional expression data are consistent with results from a comparative and time-dependent high-performance liquid chromatography analysis of cephalosporin C production. Compared to the recipient, both disruption strains have a cephalosporin C titer that is reduced by 80%. In addition to its role in cephalosporin C biosynthesis, AcveA is involved in the developmentally dependent hyphal fragmentation. In both disruption strains, hyphal fragmentation is already observed after 48 h of growth, whereas in the recipient strain, arthrospores are not even detected before 96 h of growth. Finally, the two mutant strains show hyperbranching of hyphal tips on osmotically nonstabilized media. Our findings will be significant for biotechnical processes that require a defined stage of cellular differentiation for optimal production of secondary metabolites.


Eukaryotic Cell | 2010

Two Components of a velvet-Like Complex Control Hyphal Morphogenesis, Conidiophore Development, and Penicillin Biosynthesis in Penicillium chrysogenum

Birgit Hoff; Jens Kamerewerd; Claudia Sigl; Rudolf Mitterbauer; Ivo Zadra; Hubert Kürnsteiner; Ulrich Kück

ABSTRACT Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here, we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, which we have named P. chrysogenumvelA (PcvelA) and PclaeA. Data from array analysis using a ΔPcvelA deletion strain indicate a significant role of PcVelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and high-performance liquid chromatography quantifications of penicillin titers clearly show that both PcVelA and PcLaeA play a major role in penicillin biosynthesis in a producer strain that underwent several rounds of UV mutagenesis during a strain improvement program. Both regulators are further involved in different developmental processes. While PcvelA deletion leads to light-independent conidial formation, dichotomous branching of hyphae, and pellet formation in shaking cultures, a ΔPclaeA strain shows a severe impairment in conidiophore formation under both light and dark conditions. Bimolecular fluorescence complementation assays provide evidence for a velvet-like complex in P. chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators in genera other than Aspergillus.


BioEssays | 1998

Transposons in filamentous fungi—facts and perspectives

Frank Kempken; Ulrich Kück

Transposons are ubiquitous genetic elements discovered so far in all investigated prokaryotes and eukaryotes. In remarkable contrast to all other genes, transposable elements are able to move to new locations within their host genomes. Transposition of transposons into coding sequences and their initiation of chromosome rearrangements have tremendous impact on gene expression and genome evolution. While transposons have long been known in bacteria, plants, and animals, only in recent years has there been a significant increase in the number of transposable elements discovered in filamentous fungi. Like those of other eukaryotes, each fungal transposable element is either of class I or of class II. While class I elements transpose by a RNA intermediate and employ reverse transcriptases, class II elements transpose directly at the DNA level. We present structural and functional features for such transposons that have been identified so far in filamentous fungi. Emphasis is given to specific advantages or unique features when fungal systems are used to study transposable elements, e.g., the evolutionary impact of transposons in coenocytic organisms and possible experimental approaches toward horizontal gene transfer. Finally, we focus on the potential of transposons for tagging and identifying fungal genes. BioEssays 20:652–659, 1998.© 1998 John Wiley & Sons Inc.

Collaboration


Dive into the Ulrich Kück's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Hoff

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Karl Esser

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Stahl

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Walz

Ruhr University Bochum

View shared research outputs
Researchain Logo
Decentralizing Knowledge