Ulrich Rauch
University of Applied Sciences, Kaiserslautern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrich Rauch.
International Journal of Colorectal Disease | 2006
Ulrich Rauch; Andrea Hänsgen; Cornelia Irene Hagl; Stefan Holland-Cunz; Karl-Herbert Schäfer
BackgroundThe human enteric nervous system (ENS) descends from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. The development of this entity strongly depends on the supply of an appropriate support with trophic factors during organogenesis. The lack of important factors, such as glial cell line-derived neurotrophic factor, leads to severe disturbances in the ENS and, thus, to motility disorders in children. The isolation of neuronal precursor cells as well as their transplantation after expansion in vitro is therefore a hopeful new approach concerning all forms of dysganglionosis in children.MethodsWe therefore established a way to isolate and expand precursor cells from the developing and postnatal human ENS. Bowel samples were obtained from human fetuses and children (from the 9th week of gestation to 5 years postnatal). Myenteric plexus was isolated by enzymatical digestion and cultivated until spheroid aggregates, the so-called neurospheres, developed. These neurospheres could be differentiated and also be transplanted after dissociation into aganglionic bowel in vitro.ResultsEnteric neurospheres could be grown from different gestational ages, including postmortem material. Undifferentiated proliferating precursor cells were kept in culture for up to 72 days and could be differentiated in neurons and glial cells in vitro.ConclusionThe first results using isolated enteric neurospheres in aganglionic bowel are quite promising and are a basis to develop an appropriate cell therapy for all kinds of dysganglionosis, especially for cases where a surgical approach is not sufficient or not even possible.
Biochemical and Biophysical Research Communications | 2008
Güralp O. Ceyhan; Ihsan Ekin Demir; Burak Altintas; Ulrich Rauch; Gerald Thiel; Michael W. Müller; Nathalia A. Giese; Helmut Friess; Karl-Herbert Schäfer
Neural invasion by pancreatic cancer cells (PCC) worsens the prognosis and frequently limits curative resection. We established a novel in-vitro model in which T3M4-PCCs were co-cultured with either isolated myenteric plexus cells (MP) or dorsal root ganglia (DRG) of newborn rats within a three-dimensional extracellular matrix gel. The close vicinity of MP or DRG to T3M4-PCCs induced early morphologic changes on T3M4-PCCs at the migration front prior to the migration process with elongated and neurite-targeting PCCs, compared to round and non-grouping at the non-migrating front. T3M4-PCCs built cancer-cell clusters around the DRG or MP, a process which was accelerated by increasing number of T3M4-PCCs or neurons. These findings indicate that neuro-cancer interactions start prior to PCC migration and induce evident changes in cancer and nerve biology. These findings can be reproduced within the introduced 3D in-vitro migration assay which allows investigation in the early pathogenesis of neural PCC invasion.
The American Journal of Gastroenterology | 2009
Güralp O. Ceyhan; Ihsan Ekin Demir; Ulrich Rauch; Frank Bergmann; Michael W. Müller; Markus W. Büchler; Helmut Friess; Karl-Herbert Schäfer
OBJECTIVES:Chronic pancreatitis (CP) and pancreatic cancer (PCa) are characterized by intrapancreatic neuropathic alterations, including increased neural density and hypertrophy, pancreatic neuritis and neural invasion (NI) by cancer cells in PCa. The aim of this study was to identify the influence of these neuropathic changes on the quality of pancreatic innervation, intrapancreatic glia, and visceral pain.METHODS:Pancreatic nerve fiber qualities were characterized by immunohistochemical visualization of various markers, including those for sympathetic (tyrosine hydroxylase, TH) and cholinergic innervation (choline acetyltransferase, ChAT), as well as the glial transcription factor, Sox10, and the neuroepithelial progenitor cell marker, Nestin, in normal pancreas (NP, n=16), CP (n=20), and PCa (n=20) patients. The neural immunoreactivity scores of these markers were correlated with the severity of intrapancreatic neuropathic changes and with abdominal pain sensation of patients.RESULTS:Pancreatic sympathetic innervation was significantly reduced in CP and PCa, whereas parasympathetic innervation did not show major changes. Nestin neuro-immunoreactivity was stronger, and Sox10-immunoreactivity was weaker in CP and PCa than in NP. Pancreatic sympathetic and cholinergic innervation was noticeably decreased in patients with severe pancreatic neuritis, NI by cancer cells, or abdominal pain. Moreover, the neural immunoreactivity for Sox10 and Nestin also varied with intrapancreatic neuropathic alterations and abdominal pain.CONCLUSIONS:The quality of intrapancreatic nerve fibers and the activation state of intrapancreatic glia in CP and PCa are strikingly different from those in normal pancreas. This novel phenomenon of “neural remodeling” shows how pancreatic neuropathic pain and “visceral neuropathy” are associated with altered pancreatic innervation in CP and PCa.
Pediatric Surgery International | 2003
Karl-Herbert Schäfer; Cornelia Irene Hagl; Ulrich Rauch
The enteric nervous system (ENS) derives from neural crest cells, which migrate from the neural tube into the developing gut. The neuronal and glial precursor cells migrate mainly from the oral towards the anal end of the gastrointestinal tract. So far, knowledge about the multipotent influences upon the ENS development, especially its neurotrophic support, derives mainly from knock-out models. The in vitro technique of isolating enteric neuronal precursor cells allows to study the effects of various factors upon their appropriate development in more detail. We therefore adapted the method of growing neurospheres, which are agglomerates of neuronal precursor cells and differentiated neurones and glial cells, from the central nervous system (CNS) for the ENS. The gut of NMRI mice at E12 were dissected, mildly dissociated and plated in 25-cm2 culture flasks. The cultures were maintained in N1 supplemented DMEM/F12 medium with the appropriate neurotrophin cocktails (bFGF, GDNF, Neurturin, CNTF). After several days in culture most of the cells die, while the surviving cells form clusters from which domes, and later spheres arise. The spheres could be harvested and processed for further experiments. First investigations revealed, that the amount of precursor cells was much less in enteric neurospheres as seen in corresponding cultures from the CNS. We found about 43% HNK-1-NCAM+ in enteric and approximately 90% Nestin-+ cells in midbrain neurospheres. Differentiation studies of the enteric neurospheres showed that especially ciliary neurotrophic factor (CNTF) increased the number of enteric neurones (PGP positive), while the amount of HNK-1 precursor cells decreased under the influence of all tested neurotrophins but GDNF. The culture of the freshly dissociated enteric neurospheres in a three-dimensional matrix yielded a secondary network which allows to investigate the pattern formation of the ENS. The generation of enteric neurospheres and the following differentiation and 3D culture in vitro can increase our knowledge of the amount and time point of neurotrophic as well as the ECM-protein influence upon the appropriate development of the ENS.
Annals of Surgery | 2010
Güralp O. Ceyhan; Karl-Herbert Schäfer; Annika G. Kerscher; Ulrich Rauch; Ihsan Ekin Demir; Mustafa Kadihasanoglu; Carolin Böhm; Michael W. Müller; Markus W. Büchler; Nathalia A. Giese; Mert Erkan; Helmut Friess
Objective:To further characterize the neurotrophic attributes of pancreatic cancer (PCa). Summary Background Data:PCa is characterized by neuropathic alterations which are resulting in pancreatic pain. To further characterize pancreatic neuropathy, we aimed: to analyze whether neuropathic alterations in PCa are only limited to the tumor-core or whether they are similarly encountered in neural structures in the noncancerous pancreas, to demonstrate whether PCa features neurotrophic attributes and finally to identify responsible neurotrophic molecules. Methods:Nerve density and area were quantified in normal pancreas (NP, n = 45), histologically “normal” pancreas next to pancreatic cancer (NNPCa, n = 61) and PCa (n = 97). Growth-associated protein-43, nerve growth factor (NGF), and Artemin expressions were assessed by Immunohistochemistry, Western-Blot, and quantitative real time polymerase chain reaction-analyses. Isolated myenteric plexus of newborn rats were exposed to NP, NNPCa, and PCa tissue extracts and supernatants of Panc1 and T3M4 cancer cells with or without Artemin and NGF depletion, followed by neurite density analysis. Results:Dense neural networks and enlarged nerves were not only detected in PCa but were also present in NNPCa. Growth-associated protein-43, NGF, and Artemin expressions were absent/weak in NP, but increased in both NNPCa and PCa and were closely associated with intrapancreatic neuropathy. PCa and NNPCa tissue extracts and Panc1/T3M4 supernatants noticeably increased neurite density in myenteric plexus-cultures, which were attenuated by depletion of NGF and Artemin. Conclusions:The neurotrophic effects of PCa extend into the peritumoral “normal” pancreatic areas without neuro-cancer interactions. The neurotrophic characteristics of PCa can be mimicked by in vitro analyses and reveal NGF and Artemin as potential key players in the generation of pancreatic neuropathy in PCa.
Neurogastroenterology and Motility | 2010
Ihsan Ekin Demir; Güralp O. Ceyhan; Ulrich Rauch; Burak Altintas; Markus Klotz; Michael W. Müller; Markus W. Büchler; Helmut Friess; Karl-Herbert Schäfer
Background Pancreatic neuropathy in chronic pancreatitis (CP) and pancreatic cancer (PCa) is characterized by pancreatic neuropathy, i.e. increased neural density and hypertrophy, which are associated with neuropathic pain. To better understand the mechanism of these neuropathic alterations, we aimed at achieving an in‐vitro simulation of the intrapancreatic neuroplasticity.
Journal of Histochemistry and Cytochemistry | 2006
Ulrich Rauch; Markus Klotz; Silke Maas-Omlor; Elvira Wink; Andrea Hänsgen; Cornelia Irene Hagl; Stefan Holland-Cunz; Karl-Herbert Schäfer
The human enteric nervous system (ENS) derives from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. During development of the NCC, a rearrangement of various cytoskeletal intermediate filaments such as nestin, peripherin, or alpha-internexin takes place. Although all are related to developing neurons, nestin is also used to identify neural stem cells. Until now, information about the prenatal development of the human ENS has been very restricted, especially concerning potential stem cells. In this study the expression of nestin, peripherin, and alpha-internexin, but also of neuronal markers such as protein gene product (PGP) 9.5 and tyrosine hydroxylase, were investigated in human fetal and postnatal gut. The tissue samples were rapidly removed and subsequently processed for immunohistochemistry or immunoblotting. Nestin could be detected in all samples investigated with the exception of the 9th and the 12th week of gestation (WOG). Although the neuronal marker PGP9.5 was coexpressed with nestin at the 14th WOG, this could no longer be observed at later time points. Alpha-internexin and peripherin expression also did not appear before the 14th WOG, where they were coexpressed with PGP9.5. This study reveals that the intermediate filament markers investigated are not suitable to detect early neural crest stem cells.
International Journal of Colorectal Disease | 2012
Cornelia Irene Hagl; Ulrich Rauch; Markus Klotz; Sabine Heumüller; David Grundmann; Sabrina Ehnert; Ulrike Subotic; Stefan Holland-Cunz; Karl-Herbert Schäfer
IntroductionThe transplantation of neural crest derived stem cells (NCSC) is a potent alternative for the treatment of Hirschsprungs disease (HSCR). Cells to be transplanted should find an appropriate microenvironment to survive and differentiate. Influences of HSCR-smooth-muscle-protein extracts upon isolated myenteric plexus cells, dissociated dorsal root ganglia and NCSC were studied in vitro to investigate the quality of this microenvironment effects.MethodsPostnatal human gut from children undergoing colonic resection due to HSCR was divided in segments. Smooth muscle was dissected and homogenized. Glial-cell-line-derived-neurotrophic-factor (GDNF) and transforming-growth-factor-β-1 (TGFβ-1) concentration were measured in the homogenates from the individual segment using ELISA. Myenteric plexus and dissociated dorsal root ganglia (DRG) cultures, as well as NCSCs were exposed to protein extracts derived from ganglionic and aganglionic HSCR segments, and their effect upon neurite outgrowth, survival, and branching was evaluated.Results and conclusionsThe amount of the factors varied considerably between the individual segments and also from patient to patient. Four major expression patterns could be detected. While all extracts tested lead to a significant increase in neurite outgrowth compared to the control, extracts from proximal segments tended to have more prominent effects. In one experiment, extracts from all individual segments of a single patient were tested. Neurite outgrowth, neuronal survival, and branching pattern varied from segment to segment, but all HSCR-muscle-protein extracts increased neuronal survival and network formation. Smooth muscle protein from aganglionic bowel supports the survival and outgrowth of myenteric neurons and NCSCs and is so an appropriate target for neural stem cell treatment.
Organometallics | 2012
Awadelkareem Ali; Hassan Nimir; Cenk Aktas; Volker Huch; Ulrich Rauch; Karl-Herbert Schäfer; Michael Veith
European Journal of Pediatric Surgery | 2003
Ulrich Rauch; Karl-Herbert Schäfer