Ulrike Baranyi
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrike Baranyi.
American Journal of Transplantation | 2010
Nina Pilat; Ulrike Baranyi; Christoph Klaus; Elmar Jaeckel; N Mpofu; Fritz Wrba; Dela Golshayan; Ferdinand Muehlbacher; Thomas Wekerle
Establishment of mixed chimerism through transplantation of allogeneic donor bone marrow (BM) into sufficiently conditioned recipients is an effective experimental approach for the induction of transplantation tolerance. Clinical translation, however, is impeded by the lack of feasible protocols devoid of cytoreductive conditioning (i.e. irradiation and cytotoxic drugs/mAbs). The therapeutic application of regulatory T cells (Tregs) prolongs allograft survival in experimental models, but appears insufficient to induce robust tolerance on its own. We thus investigated whether mixed chimerism and tolerance could be realized without the need for cytoreductive treatment by combining Treg therapy with BM transplantation (BMT). Polyclonal recipient Tregs were cotransplanted with a moderate dose of fully mismatched allogeneic donor BM into recipients conditioned solely with short‐course costimulation blockade and rapamycin. This combination treatment led to long‐term multilineage chimerism and donor‐specific skin graft tolerance. Chimeras also developed humoral and in vitro tolerance. Both deletional and nondeletional mechanisms contributed to maintenance of tolerance. All tested populations of polyclonal Tregs (FoxP3‐transduced Tregs, natural Tregs and TGF‐β induced Tregs) were effective in this setting. Thus, Treg therapy achieves mixed chimerism and tolerance without cytoreductive recipient treatment, thereby eliminating a major toxic element impeding clinical translation of this approach.
Journal of Cell Science | 2004
Renate Kroismayr; Ulrike Baranyi; Christian Stehlik; Andrea Dorfleutner; Bernd R. Binder; Joachim Lipp
By differential screening we isolated genes upregulated in inflammatory cytokine-stimulated human skin microvascular endothelial cells. One of these cDNAs encoded RCC1 (regulator of chromosome condensation 1)-like repeats and a HECT (homologous to E6-AP C-terminus) domain, representing a member of the HERC (HECT and RCC1 domain protein) family of ubiquitin ligases. The mRNA level of this member, HERC5, is specifically upregulated in endothelial cells by the pro-inflammatory cytokines tumor necrosis factor α and interleukin 1β, and by lipopolysaccharide (LPS), but is hardly expressed in other cells of the vascular wall such as primary smooth muscle cells and fibroblasts. Regulation of HERC5 gene expression suggests a critical role for the transcription factor NF-κB. In contrast to mRNA expression HERC5 protein is subject of enhanced degradation upon LPS stimulation of endothelial cells. The time course of LPS-induced changes in HERC5 protein and mRNA levels suggests that the initial drop in HERC5 protein is balanced by increased protein synthesis due to upregulation of HERC5 mRNA. This leads to recovery of HERC5 protein levels within 12 hours of LPS stimulation and points at a tight control of HERC5 protein. To analyze functional activity of this putative member of the ubiquitin-conjugating pathway we performed in vitro assays with different ubiquitin-conjugating enzymes. We found that HERC5 possesses ubiquitin ligase activity and requires the presence of the ubiquitin-conjugating enzyme UbcH5a for its activity. These data show for the first time that a functionally active HECT ubiquitin ligase exhibits a tightly controlled cytosolic level under inflammatory conditions in endothelial cells.
Journal of Immunology | 2008
Ulrike Baranyi; Birgit Linhart; Nina Pilat; Martina Gattringer; Jessamyn Bagley; Ferdinand Muehlbacher; John Iacomini; Rudolf Valenta; Thomas Wekerle
Allergy represents a hypersensitivity disease that affects >25% of the population in industrialized countries. The underlying type I allergic immune reaction occurs in predisposed atopic individuals in response to otherwise harmless Ags (i.e., allergens) and is characterized by the production of allergen-specific IgE, an allergen-specific T cell response, and the release of biologically active mediators such as histamine from mast cells and basophils. Regimens permanently tolerizing an allergic immune response still need to be developed. We therefore retrovirally transduced murine hematopoietic stem cells to express the major grass pollen allergen Phl p 5 on their cell membrane. Transplantation of these genetically modified hematopoietic stem cells led to durable multilineage molecular chimerism and permanent immunological tolerance toward the introduced allergen at the B cell, T cell, and effector cell levels. Notably, Phl p 5-specific serum IgE and IgG remained undetectable, and T cell nonresponsiveness persisted throughout follow-up (40 wk). Besides, mediator release was specifically absent in in vitro and in vivo assays. B cell, T cell, and effector cell responses to an unrelated control allergen (Bet v 1) were unperturbed, demonstrating specificity of this tolerance protocol. We thus describe a novel cell-based strategy for the prevention of allergy.
Transplantation | 2011
Nina Pilat; Christoph Klaus; Martina Gattringer; Elmar Jaeckel; Fritz Wrba; Dela Golshayan; Ulrike Baranyi; Thomas Wekerle
Background. Mixed chimerism is an effective strategy for the induction of transplantation tolerance but the toxicity of recipient conditioning makes current bone marrow (BM) transplantation (BMT) protocols unsuitable for widespread clinical application. Therapies promoting BM engraftment under minimal conditioning would facilitate translation of this concept to the clinic. Recently, we have shown that regulatory T cell (Treg) therapy has potent engraftment-enhancing effects in an irradiation-free noncytotoxic BMT protocol, but only if it is combined with rapamycin treatment. Methods. Here, we investigated whether polyclonal Treg therapy is effective in promoting chimerism and tolerance in an otherwise unsuccessful BMT protocol using low-dose total body irradiation (1 Gy) and costimulation blockade and determined whether Tregs do so on their own without rapamycin. Results. The application of polyclonal FoxP3-transduced recipient Tregs led to durable multilineage chimerism and donor-specific skin graft tolerance whereas recipients receiving costimulation blockade alone or green flourescent protein (GFP)-transduced cells failed to develop chimerism. Infused Tregs had a limited life span as indicated by polymerase chain reaction analysis but rather contribute to de novo induction of subsequent Treg generations. Deletion of donor-reactive T cells was observed but progressed more slowly over time compared with recipients of a nonmyeloablative BMT protocol using 3 Gy total body irradiation. Conclusions. In conclusion, Treg therapy promotes BM engraftment on its own in a low-dose irradiation BMT protocol, leading to chimerism and tolerance maintained through deletional and nondeletional mechanisms.
Cellular and Molecular Life Sciences | 2008
Karin Hochrainer; Renate Kroismayr; Ulrike Baranyi; Bernd R. Binder; Joachim Lipp
Abstract.Small HERC proteins are defined by the presence of one RCC1-like domain and a HECT domain. Having evolved out of one common ancestor, the four members of the family exhibit a high degree of homology in genomic organization and amino acid sequence, thus it seems possible that they might accomplish similar functions. Here we show that small HERC proteins interact with each other and localize to the same cellular structures, which we identify as late endosomes and lysosomes. We demonstrate interaction of HERC3 with the ubiquitin-like proteins hPLIC-1 and hPLIC-2 and we establish interaction of HERC5 with the metastasis suppressor Nm23B. While hPLIC proteins are not ubiquitinated by HERC3, HERC5 plays an important role in ubiquitination of Nm23B. In summary, although small HERC proteins are highly homologous showing the same subcellular distribution, they undergo different molecular interactions.
The Journal of Allergy and Clinical Immunology | 2017
Raphaela Freidl; Antonia Gstoettner; Ulrike Baranyi; Ines Swoboda; Frank Stolz; Margarete Focke-Tejkl; Thomas Wekerle; Ronald van Ree; Rudolf Valenta; Birgit Linhart
Background Fish is a frequent elicitor of severe IgE‐mediated allergic reactions. Beside avoidance, there is currently no allergen‐specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium‐binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. Methods C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T‐cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti‐hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1–specific basophil degranulation, and Cyp c 1–induced allergic symptoms in the mouse model. Results A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1–induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Conclusions Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy.
American Journal of Transplantation | 2015
Nina Pilat; Christoph Klaus; Christoph Schwarz; Karin Hock; Rupert Oberhuber; Elisabeth Schwaiger; Martina Gattringer; Haley Ramsey; Ulrike Baranyi; Bettina Zelger; Gerald Brandacher; Fritz Wrba; Thomas Wekerle
The mixed chimerism approach achieves donor‐specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti‐CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor‐specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC‐mismatched/minor antigen‐matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non‐MHC antigens cause graft rejection and split tolerance.
Transplant International | 2010
Patrick-Nikolaus Nierlich; Christoph Klaus; Sinda Bigenzahn; Nina Pilat; Zvonimir Koporc; Ines Pree; Ulrike Baranyi; Masaru Taniguchi; Ferdinand Muehlbacher; Thomas Wekerle
Distinct lymphocyte populations have been identified that either promote or impede the establishment of chimerism and tolerance through allogeneic bone marrow transplantation (BMT). Natural killer T (NKT) cells have pleiotropic regulatory properties capable of either augmenting or downmodulating various immune responses. We investigated in this study whether NKT cells affect outcome in mixed chimerism models employing fully mismatched nonmyeloablative BMT with costimulation blockade (CB). The absence of NKT cells had no detectable effect on chimerism or skin graft tolerance after conditioning with 3Gy total body irradiation (TBI), and a limited positive effect with 1Gy TBI. Stimulation of NKT cells with alpha‐galactosylceramide (alpha‐gal) at the time of BMT prevented chimerism and tolerance. Activation of recipient (as opposed to donor) NKT cells was necessary and sufficient for the alpha‐gal effect. The detrimental effect of NKT activation was also observed in the absence of T cells after conditioning with in vivo T‐cell depletion (TCD). NKT cells triggered rejection of BM via NK cells as chimerism and tolerance were not abrogated when NKT cells were stimulated in the absence of both NK cells and T cells. Thus, activation of NKT cells at the time of BMT overcomes the effects of CB, inhibiting the establishment of chimerism and tolerance.
Transplant International | 2013
Haley Ramsey; Nina Pilat; Karin Hock; Christoph Klaus; Lukas Unger; Christoph Schwarz; Ulrike Baranyi; Martina Gattringer; Elisabeth Schwaiger; Fritz Wrba; Thomas Wekerle
While costimulation blockade‐based mixed chimerism protocols work well for inducing tolerance in rodents, translation to preclinical large animal/nonhuman primate models has been less successful. One recognized cause for these difficulties is the high frequency of alloreactive memory T cells (Tmem) found in the (pre)clinical setting as opposed to laboratory mice. In the present study, we therefore developed a murine bone marrow transplantation (BMT) model employing recipients harboring polyclonal donor‐reactive Tmem without concomitant humoral sensitization. This model was then used to identify strategies to overcome this additional immune barrier. We found that B6 recipients that were enriched with 3 × 107 T cells isolated from B6 mice that had been previously grafted with Balb/c skin, rejected Balb/c BM despite costimulation blockade with anti‐CD40L and CTLA4Ig (while recipients not enriched developed chimerism). Adjunctive short‐term treatment of sensitized BMT recipients with rapamycin or anti‐LFA‐1 mAb was demonstrated to be effective in controlling Tmem in this model, leading to long‐term mixed chimerism and donor‐specific tolerance. Thus, rapamycin and anti‐LFA‐1 mAb are effective in overcoming the potent barrier that donor‐reactive Tmem pose to the induction of mixed chimerism and tolerance despite costimulation blockade.
Clinical & Experimental Allergy | 2012
Ulrike Baranyi; Nina Pilat; Martina Gattringer; Birgit Linhart; Christoph Klaus; Elisabeth Schwaiger; John Iacomini; R. Valenta; Thomas Wekerle
Development of antigen‐specific preventive strategies is a challenging goal in IgE‐mediated allergy. We have recently shown in proof‐of‐concept experiments that allergy can be successfully prevented by induction of durable tolerance via molecular chimerism. Transplantation of syngeneic hematopoietic stem cells genetically modified to express the clinically relevant grass pollen allergen Phl p 5 into myeloablated recipients led to high levels of chimerism (i.e. macrochimerism) and completely abrogated Phl p 5‐specific immunity despite repeated immunizations with Phl p 5.