Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrike Kämmerer is active.

Publication


Featured researches published by Ulrike Kämmerer.


BMC Cancer | 2009

Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature

Andrea Köhrmann; Ulrike Kämmerer; Michaela Kapp; Johannes Dietl; Jelena Anacker

BackgroundMatrix metalloproteinases (MMPs) are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found.MethodsTo fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2) and ten grade 3 (G3) breast cancer tissues). As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1) commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry.ResultsIn summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28) with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein expression for most of the MMPs analyzed.ConclusionMMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28 might thus be associated with breast cancer development and tumor progression. Therefore, these MMPs are proper candidates for further functional analysis of their role in breast cancer.


American Journal of Pathology | 2003

Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy.

Ulrike Kämmerer; Andreas O. Eggert; Michaela Kapp; Alexander D. McLellan; Teunis B. H. Geijtenbeek; Johannes Dietl; Yvette van Kooyk; Eckhart Kämpgen

Intact human pregnancy can be regarded as an immunological paradox in that the maternal immune system accepts the allogeneic embryo without general immunosuppression. Because dendritic cell (DC) subsets could be involved in peripheral tolerance, the uterine mucosa (decidua) was investigated for DC populations. Here we describe the detailed immunohistochemical and functional characterization of HLA-DR-positive antigen-presenting cells (APCs) in early pregnancy decidua. In contrast to classical macrophages and CD83(+) DCs, which were found in comparable numbers in decidua and nonpregnant endometrium, only decidua harbored a significant population of HLA-DR(+)/DC-SIGN(+) APCs further phenotyped as CD14(+)/CD4(+)/CD68(+/-)/CD83(-)/CD25(-). These cells exhibited a remarkable proliferation rate (9.2 to 9.8% of all CD209(+) cells) by double staining with Ki67 and proliferating cell nuclear antigen. Unique within the DC-family, the majority of DC-SIGN(+) decidual APCs were observed in situ to have intimate contact with CD56(+)/CD16(-)/ICAM-3(+) decidual natural killer cells, another pregnancy-restricted cell population. In vitro, freshly isolated CD14(+)/DC-SIGN(+) decidual cells efficiently took up antigen, but could not stimulate naive allogeneic T cells at all. Treatment with an inflammatory cytokine cocktail resulted in down-regulation of antigen uptake capacity and evolving capacity to effectively stimulate resting T cells. Fluorescence-activated cell sorting analysis confirmed the maturation of CD14(+)/DC-SIGN(+) decidual cells into CD25(+)/CD83(+) mature DCs. In summary, this is the first identification of a uterine immature DC population expressing DC-SIGN, that appears only in pregnancy-associated tissue, has a high proliferation rate, and a conspicuous association with a natural killer subset.


American Journal of Pathology | 2000

Human Decidua Contains Potent Immunostimulatory CD83+ Dendritic Cells

Ulrike Kämmerer; Michael Schoppet; Alexander D. McLellan; Michaela Kapp; Hans-Iko Huppertz; Eckhart Kämpgen; Johannes Dietl

Dendritic cells (DCs) are sentinel cells of the immune system important in initiating antigen-specific T-cell responses to microbial and transplantation antigens. DCs are particularly found in surface tissues such as skin and mucosa, where the organism is threatened by infectious agents. The human decidua, despite its proposed immunosuppressive function, hosts a variety of immunocompetent CD45 cells such as natural killer cells, macrophages, and T cells. Here we describe the detection, isolation, and characterization of CD45(+), CD40(+), HLA-DR(++), and CD83(+) cells from human early pregnancy decidua with typical DC morphology. CD83(+) as well as CD1a(+) cells were found in close vicinity to endometrial glands, with preference to the basal layer of the decidua. In vitro, decidual CD83(+) cells could be enriched to approximately 30%, with the remainder of cells encompassing DC-bound CD3(+) T cells. Stimulation of allogeneic T cells in a mixed leukocyte reaction by the decidual cell fraction enriched for CD83(+) cells, was similar to that obtained with blood monocyte-derived DCs, demonstrating the potent immunostimulatory capacity of these cells. Decidual DCs with morphological, phenotypic, and functional characteristics of immunostimulatory DCs might be important mediators in the regulation of immunological balance between maternal and fetal tissue, leading to successful pregnancy.


Biology of Reproduction | 2007

Dendritic Cells: Key to Fetal Tolerance?

Sandra M. Blois; Ulrike Kämmerer; Catalina D. Alba Soto; Mareike Tometten; Valerie Shaikly; Gabriela Barrientos; Richard D. Jurd; Daniel Rukavina; Angus W. Thomson; Burghard F. Klapp; Nelson Fernandez; Petra C. Arck

Abstract Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein.


British Journal of Cancer | 2007

Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation.

Thomas G. P. Grunewald; Ulrike Kämmerer; Christiane Winkler; Detlef Schindler; Albert Sickmann; A Hönig; Elke Butt

LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration. In the present work, we analysed the effect of LASP-1 on biology and function of human ovarian cancer cell line SKOV-3 using small interfering RNA technique (siRNA). Transfection with LASP-1-specific siRNA resulted in a reduced protein level of LASP-1 in SKOV-3 cells. The siRNA-treated cells were arrested in G2/M phase of the cell cycle and proliferation of the tumour cells was suppressed by 60–90% corresponding to around 70% of the cells being transfected successfully as seen by immunofluorescence. Moreover, transfected tumour cells showed a 40% reduced migration. LASP-1 silencing is accompanied by a reduced binding of the LASP-1-binding partner zyxin to focal contacts without changes in actin stress fibre and microtubule organisation or focal adhesion morphology as observed by immunofluorescence. In contrast, silencing of zyxin is not influencing cell migration and had neither influence on LASP-1 expression nor actin cytoskeleton and focal contact morphology suggesting that LASP-1 is necessary and sufficient for recruiting zyxin to focal contacts. The data provide evidence for an essential role of LASP-1 in tumour cell growth and migration, possibly through influencing zyxin localization.


Journal of Histochemistry and Cytochemistry | 2001

A New Rapid Immunohistochemical Staining Technique Using the EnVision Antibody Complex

Ulrike Kämmerer; Michaela Kapp; Andrea Maria Gassel; Thomas Richter; Christian Tank; Johannes Dietl; Peter Ruck

Rapid immunohistochemical investigation, in addition to staining with hematoxylin and eosin, would be useful during intraoperative frozen section diagnosis in some cases. This study was undertaken to investigate whether the recently described EnVision system, a highly sensitive two-step immunohistochemical technique, could be modified for rapid immunostaining of frozen sections. Forty-five primary antibodies were tested on frozen sections from various different tissues. After fixation in acetone for 1 min and air-drying, the sections were incubated for 3 min each with the primary antibody, the EnVision complex (a large number of secondary antibodies and horseradish peroxidase coupled to a dextran backbone), and the chromogen (3,3′diaminobenzidine or 3-amino-9-ethylcarbazole). All reactions were carried out at 37C. Specific staining was seen with 38 antibodies (including HMB-45 and antibodies against keratin, vimentin, leukocyte common antigen, smooth muscle actin, synaptophysin, CD34, CD3, CD20, and prostate-specific antigen). A modification of the EnVision method allows the detection of a broad spectrum of antigens in frozen sections in less than 13 min. This method could be a useful new tool in frozen section diagnosis and research. (J Histochem Cytochem 49:623–630, 2001)


Nutrition & Metabolism | 2011

Is there a role for carbohydrate restriction in the treatment and prevention of cancer

Rainer J. Klement; Ulrike Kämmerer

Over the last years, evidence has accumulated suggesting that by systematically reducing the amount of dietary carbohydrates (CHOs) one could suppress, or at least delay, the emergence of cancer, and that proliferation of already existing tumor cells could be slowed down. This hypothesis is supported by the association between modern chronic diseases like the metabolic syndrome and the risk of developing or dying from cancer. CHOs or glucose, to which more complex carbohydrates are ultimately digested, can have direct and indirect effects on tumor cell proliferation: first, contrary to normal cells, most malignant cells depend on steady glucose availability in the blood for their energy and biomass generating demands and are not able to metabolize significant amounts of fatty acids or ketone bodies due to mitochondrial dysfunction. Second, high insulin and insulin-like growth factor (IGF)-1 levels resulting from chronic ingestion of CHO-rich Western diet meals, can directly promote tumor cell proliferation via the insulin/IGF1 signaling pathway. Third, ketone bodies that are elevated when insulin and blood glucose levels are low, have been found to negatively affect proliferation of different malignant cells in vitro or not to be usable by tumor cells for metabolic demands, and a multitude of mouse models have shown anti-tumorigenic properties of very low CHO ketogenic diets. In addition, many cancer patients exhibit an altered glucose metabolism characterized by insulin resistance and may profit from an increased protein and fat intake.In this review, we address the possible beneficial effects of low CHO diets on cancer prevention and treatment. Emphasis will be placed on the role of insulin and IGF1 signaling in tumorigenesis as well as altered dietary needs of cancer patients.


American Journal of Reproductive Immunology | 2007

Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells

Gordana Laškarin; Ulrike Kämmerer; Daniel Rukavina; Angus W. Thomson; Nelson Fernandez; Sandra M. Blois

During pregnancy, a delicate balance of innate and adaptive immune responses at the maternal–fetal interface promotes survival of the semi‐allogeneic embryo and, at the same time, allows effective immunity to protect the mother from environmental pathogens. As in other tissues, antigen handling and processing in the decidualized endometrium constitutes a primary event in the onset of immune responses and is therefore likely to determine their stimulatory or tolerogenic nature. Maternal antigen‐presenting cells [macrophages and dendritic cells (DCs)] are scattered throughout the decidualized endometrium during all stages of pregnancy and appear to be important players in this feto‐maternal immune adjustment. This review focuses on the characterization of decidual macrophages and DCs, as well as their involvement in cell–cell interactions within the decidual leukocyte network, which are likely to influence uterine and placental homeostasis as well as the local maternal immune responses to the fetus during pregnancy.


International Journal of Oncology | 2014

ERGO: A pilot study of ketogenic diet in recurrent glioblastoma

Johannes Rieger; Oliver Bähr; Gabriele Maurer; Elke Hattingen; Kea Franz; D. P. Brucker; Stefan Walenta; Ulrike Kämmerer; Johannes F. Coy; Michael Weller; Joachim P. Steinbach

Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3–13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12–124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (p<0.05). In conclusion, a ketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.


Molecular Human Reproduction | 2011

Human decidua and invasive trophoblasts are rich sources of nearly all human matrix metalloproteinases

Jelena Anacker; Sabine E. Segerer; Carsten Hagemann; Sonja Feix; Michaela Kapp; Renate Bausch; Ulrike Kämmerer

Trophoblast cell (CTB) invasion into the maternal endometrium plays a crucial role during human embryo implantation and placentation. As for all invasive cell types, the ability of CTB to infiltrate the uterine wall is facilitated by the activity of matrix metalloproteinases (MMPs), which is regulated by tissue inhibitors of MMPs (TIMPs). There is evidence for the expression of several MMPs and TIMPs in decidua. However, published data are limited. Therefore, to set a foundation for future research, we screened a panel of healthy human deciduas obtained during first, second and third trimester of pregnancy in addition to isolated decidual cell populations for the expression of all known human MMPs and TIMPs by RT-PCR, western blot and immunohistochemistry. In the decidual samples, we detected almost all MMPs and all four TIMPs at mRNA level. While the expression of proMMP-3 and active MMP-13 and -23 was down-regulated in the course of pregnancy, the pro forms of MMP-8, -19 and -23, active MMP-9, -10, -12, -15, -16, -26 and -28, and pro- and active MMP-14 increased towards the end of gestation. All MMPs and TIMPs were expressed in uterine natural killer cells, decidual fibroblasts and/or trophoblasts, with the exception of MMP-20 and -25. In summary, a remarkably broad spectrum of MMPs was expressed at the human feto-maternal interface, reflecting the highly invasive and remodelling effect on placenta formation. It can be speculated that expression of MMPs correlates with the invasive potential of CTBs together with a crucial role in activation of labour at term.

Collaboration


Dive into the Ulrike Kämmerer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Gödecke

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge