Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrike Mäder is active.

Publication


Featured researches published by Ulrike Mäder.


Science | 2012

Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis

Pierre Nicolas; Ulrike Mäder; Etienne Dervyn; Tatiana Rochat; Aurélie Leduc; Nathalie Pigeonneau; Elena Bidnenko; Elodie Marchadier; Mark Hoebeke; Stéphane Aymerich; Dörte Becher; Paola Bisicchia; Eric Botella; Olivier Delumeau; Geoff Doherty; Emma L. Denham; Mark J. Fogg; Vincent Fromion; Anne Goelzer; Annette Hansen; Elisabeth Härtig; Colin R. Harwood; Georg Homuth; Hanne Østergaard Jarmer; Matthieu Jules; Edda Klipp; Ludovic Le Chat; François Lecointe; Peter J. Lewis; Wolfram Liebermeister

Outside In Acquisition and analysis of large data sets promises to move us toward a greater understanding of the mechanisms by which biological systems are dynamically regulated to respond to external cues. Now, two papers explore the responses of a bacterium to changing nutritional conditions (see the Perspective by Chalancon et al.). Nicolas et al. (p. 1103) measured transcriptional regulation for more than 100 different conditions. Greater amounts of antisense RNA were generated than expected and appeared to be produced by alternative RNA polymerase targeting subunits called sigma factors. One transition, from malate to glucose as the primary nutrient, was studied in more detail by Buescher et al. (p. 1099) who monitored RNA abundance, promoter activity in live cells, protein abundance, and absolute concentrations of intracellular and extracellular metabolites. In this case, the bacteria responded rapidly and largely without transcriptional changes to life on malate, but only slowly adapted to use glucose, a shift that required changes in nearly half the transcription network. These data offer an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems. A horizontal analysis reveals the breadth of genes turned on and off as nutrients change. Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.


Science | 2012

Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

Joerg Martin Buescher; Wolfram Liebermeister; Matthieu Jules; Markus Uhr; Jan Muntel; Eric Botella; Bernd Hessling; Roelco J. Kleijn; Ludovic Le Chat; François Lecointe; Ulrike Mäder; Pierre Nicolas; Sjouke Piersma; Frank Rügheimer; Dörte Becher; Philippe Bessières; Elena Bidnenko; Emma L. Denham; Etienne Dervyn; Kevin M. Devine; Geoff Doherty; Samuel Drulhe; Liza Felicori; Mark J. Fogg; Anne Goelzer; Annette Hansen; Colin R. Harwood; Michael Hecker; Sebastian Hübner; Claus Hultschig

Outside In Acquisition and analysis of large data sets promises to move us toward a greater understanding of the mechanisms by which biological systems are dynamically regulated to respond to external cues. Now, two papers explore the responses of a bacterium to changing nutritional conditions (see the Perspective by Chalancon et al.). Nicolas et al. (p. 1103) measured transcriptional regulation for more than 100 different conditions. Greater amounts of antisense RNA were generated than expected and appeared to be produced by alternative RNA polymerase targeting subunits called sigma factors. One transition, from malate to glucose as the primary nutrient, was studied in more detail by Buescher et al. (p. 1099) who monitored RNA abundance, promoter activity in live cells, protein abundance, and absolute concentrations of intracellular and extracellular metabolites. In this case, the bacteria responded rapidly and largely without transcriptional changes to life on malate, but only slowly adapted to use glucose, a shift that required changes in nearly half the transcription network. These data offer an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems. A vertical analysis reveals that a simple switch of one food for another evokes changes at many levels. Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and model-based data analyses of dynamic transcript, protein, and metabolite abundances and promoter activities. Adaptation to malate was rapid and primarily controlled posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to glucose that entailed nearly half of the known transcription regulation network. Interactions across multiple levels of regulation were involved in adaptive changes that could also be achieved by controlling single genes. Our analysis suggests that global trade-offs and evolutionary constraints provide incentives to favor complex control programs.


Metabolic Engineering | 2003

Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.

Hans-Matti Blencke; Georg Homuth; Holger Ludwig; Ulrike Mäder; Michael Hecker; Jörg Stülke

Chemoheterotrophic bacteria use a few central metabolic pathways for carbon catabolism and energy production as well as for the generation of the main precursors for anabolic reactions. All sources of carbon and energy are converted to intermediates of these central pathways and then further metabolized. While the regulation of genes encoding enzymes used to introduce specific substrates into the central metabolism has already been studied to some detail, much less is known about the regulation of the central metabolic pathways. In this study, we investigated the responses of the Bacillus subtilis transcriptome to the presence of glucose and analyzed the role of the pleiotropic transcriptional regulator CcpA in these responses. We found that CcpA directly represses genes involved in the utilization of secondary carbon sources. In contrast, induction by glucose seems to be mediated by a variety of different mechanisms. In the presence of glucose, the genes encoding glycolytic enzymes are induced. Moreover, the genes responsible for the production of acetate from pyruvate with a concomitant substrate-level phosphorylation are induced by glucose. In contrast, the genes required for the complete oxidation of the sugar (Krebs cycle, respiration) are repressed if excess glucose is available for the bacteria. In the absence of glucose, the genes of the Krebs cycle as well as gluconeogenic genes are derepressed. The genes encoding enzymes of the pentose phosphate pathway are expressed both in the presence and the absence of glucose, as suggested by the central role of this pathway in generating anabolic precursors.


Journal of Bacteriology | 2010

A Comprehensive Proteomics and Transcriptomics Analysis of Bacillus subtilis Salt Stress Adaptation

Hannes Hahne; Ulrike Mäder; Andreas Otto; Florian Bonn; Leif Steil; Erhard Bremer; Michael Hecker; Dörte Becher

In its natural habitats, Bacillus subtilis is exposed to changing osmolarity, necessitating adaptive stress responses. Transcriptomic and proteomic approaches can provide a picture of the dynamic changes occurring in salt-stressed B. subtilis cultures because these studies provide an unbiased view of cells coping with high salinity. We applied whole-genome microarray technology and metabolic labeling, combined with state-of-the-art proteomic techniques, to provide a global and time-resolved picture of the physiological response of B. subtilis cells exposed to a severe and sudden osmotic upshift. This combined experimental approach provided quantitative data for 3,961 mRNA transcription profiles, 590 expression profiles of proteins detected in the cytosol, and 383 expression profiles of proteins detected in the membrane fraction. Our study uncovered a well-coordinated induction of gene expression subsequent to an osmotic upshift that involves large parts of the SigB, SigW, SigM, and SigX regulons. Additionally osmotic upregulation of a large number of genes that do not belong to these regulons was observed. In total, osmotic upregulation of about 500 B. subtilis genes was detected. Our data provide an unprecedented rich basis for further in-depth investigation of the physiological and genetic responses of B. subtilis to hyperosmotic stress.


Nature Communications | 2010

Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis

Andreas Otto; Jörg Bernhardt; Hanna Meyer; Marc Schaffer; Florian-Alexander Herbst; Juliane Siebourg; Ulrike Mäder; Michael Lalk; Michael Hecker; Dörte Becher

Functional genomics of the Gram-positive model organism Bacillus subtilis reveals valuable insights into basic concepts of cell physiology. In this study, we monitor temporal changes in the proteome, transcriptome and extracellular metabolome of B. subtilis caused by glucose starvation. For proteomic profiling, a combination of in vivo metabolic labelling and shotgun mass spectrometric analysis was carried out for five different proteomic subfractions (cytosolic, integral membrane, membrane, surface and extracellular proteome fraction), leading to the identification of ∼52% of the predicted proteome of B. subtilis. Quantitative proteomic and corresponding transcriptomic data were analysed with Voronoi treemaps linking functional classification and relative expression changes of gene products according to their fate in the stationary phase. The obtained data comprise the first comprehensive profiling of changes in the membrane subfraction and allow in-depth analysis of major physiological processes, including monitoring of protein degradation.


Molecular Genetics and Genomics | 2002

Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics

Ulrike Mäder; Haike Antelmann; Buder T; M. K. Dahl; Michael Hecker; Georg Homuth

Abstract. The DegS-DegU two-component regulatory system of Bacillus subtilis controls various processes that characterize the transition from the exponential to the stationary growth phase, including the induction of extracellular degradative enzymes, expression of late competence genes and down-regulation of the σD regulon. The degU32(Hy) mutation stabilizes the phosphorylated form of DegU (DegU-P), resulting in overproduction of several extracellular degradative enzymes. In this study, the pleiotropic DegS-DegU regulon was characterized by combining proteomic and transcriptomic approaches. A comparative analysis of wild-type B. subtilis and the degU32(Hy) mutant grown in complex medium was performed during the exponential and in the stationary growth phase. Besides genes already known to be under the control of DegU-P, novel putative members of this regulon were identified. Although the degU32(Hy) mutant is assumed to contain high levels of phosphorylated DegU in the exponential as well as in the stationary growth phase, many genes known to be positively regulated by DegU-P did not show enhanced expression in the mutant strain during exponential growth. This is consistent with the fact that most genes belonging to the DegS-DegU regulon are subject to multiple regulation; this is also reflected in the strong stationary-phase induction of these genes in the mutant strain. As expected, during the exponential growth phase, the σD regulon was expressed at significantly lower levels in the degU32(Hy) mutant than in the wild type.


Journal of Bacteriology | 2005

Iron-Responsive Regulation of the Helicobacter pylori Iron-Cofactored Superoxide Dismutase SodB Is Mediated by Fur

Florian Ernst; Georg Homuth; Jeroen Stoof; Ulrike Mäder; Barbara Waidner; Ernst J. Kuipers; Manfred Kist; Johannes G. Kusters; Stefan Bereswill; Arnoud H. M. van Vliet

Maintaining iron homeostasis is a necessity for all living organisms, as free iron augments the generation of reactive oxygen species like superoxide anions, at the risk of subsequent lethal cellular damage. The iron-responsive regulator Fur controls iron metabolism in many bacteria, including the important human pathogen Helicobacter pylori, and thus is directly or indirectly involved in regulation of oxidative stress defense. Here we demonstrate that Fur is a direct regulator of the H. pylori iron-cofactored superoxide dismutase SodB, which is essential for the defense against toxic superoxide radicals. Transcription of the sodB gene was iron induced in H. pylori wild-type strain 26695, resulting in expression of the SodB protein in iron-replete conditions but an absence of expression in iron-restricted conditions. Mutation of the fur gene resulted in constitutive, iron-independent expression of SodB. Recombinant H. pylori Fur protein bound with low affinity to the sodB promoter region, but addition of the iron substitute Mn2+ abolished binding. The operator sequence of the iron-free form of Fur, as identified by DNase I footprinting, was located directly upstream of the sodB gene at positions -5 to -47 from the transcription start site. The direct role of Fur in regulation of the H. pylori sodB gene contrasts with the small-RNA-mediated sodB regulation observed in Escherichia coli. In conclusion, H. pylori Fur is a versatile regulator involved in many pathways essential for gastric colonization, including superoxide stress defense.


Molecular & Cellular Proteomics | 2011

S-Bacillithiolation Protects Against Hypochlorite Stress in Bacillus subtilis as Revealed by Transcriptomics and Redox Proteomics

Bui Khanh Chi; Katrin Gronau; Ulrike Mäder; Bernd Hessling; Dörte Becher; Haike Antelmann

Protein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypochloric acid in B. subtilis. The expression profile of NaOCl stress is indicative of disulfide stress as shown by the induction of the thiol- and oxidative stress-specific Spx, CtsR, and PerR regulons. Thiol redox proteomics identified only few cytoplasmic proteins with reversible thiol-oxidations in response to NaOCl stress that include GapA and MetE. Shotgun-liquid chromatography-tandem MS analyses revealed that GapA, Spx, and PerR are oxidized to intramolecular disulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated proteins in NaOCl-treated cells, including the OhrR repressor, two methionine synthases MetE and YxjG, the inorganic pyrophosphatase PpaC, the 3-d-phosphoglycerate dehydrogenase SerA, and the putative bacilliredoxin YphP. S-bacillithiolation of the OhrR repressor leads to up-regulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. The mechanism of S-glutathionylation of MetE has been described in Escherichia coli also leading to enzyme inactivation and methionine auxotrophy. In summary, our studies discover an important role of the bacillithiol redox buffer in protection against hypochloric acid by S-bacillithiolation of the redox-sensing regulator OhrR and of four enzymes of the methionine biosynthesis pathway.


Molecular Microbiology | 2008

mRNA processing by RNases J1 and J2 affects Bacillus subtilis gene expression on a global scale

Ulrike Mäder; Léna Zig; Julia Kretschmer; Georg Homuth; Harald Putzer

Ribonucleases J1 and J2 of Bacillus subtilis are evolutionarily conserved enzymes combining an endoribonucleolytic and a 5′−3′ exoribonucleolytic activity in a single polypeptide. Their endoribonucleolytic cleavage specificity resembles that of RNase E, a key player in the processing and degradation of RNA in Escherichia coli. The biological significance of the paralogous RNases J1 and J2 in Bacillus subtilis is still unknown. Based on the premise that cleavage of an mRNA might alter its stability and hence its abundance, we have analysed the transcriptomes and proteomes of single and double mutant strains. The absence or decrease of both RNases J1 and J2 together profoundly alters the expression level of hundreds of genes. By contrast, the effect on global gene expression is minimal in single mutant strains, suggesting that the two nucleases have largely overlapping substrate specificities. Half‐life measurements of individual mRNAs show that RNases J1/J2 can alter gene expression by modulating transcript stability. The absence/decrease of RNases J1 and J2 results in similar numbers of transcripts whose abundance is either increased or decreased, suggesting a complex role of these ribonucleases in both degradative and regulatory processing events that have an important impact on gene expression.


Microbiology | 2002

Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response.

Tanja Kaan; Georg Homuth; Ulrike Mäder; Julia Bandow; Thomas Schweder

The transcriptome of Bacillus subtilis was analysed at different time points (30, 60 and 90 min) after a temperature downshift from 37 to 18 degrees C using DNA macroarrays. This approach allowed the identification of around 50 genes exhibiting an increased mRNA level and around 50 genes exhibiting a decreased mRNA level under cold-shock conditions. Many of the repressed genes encode enzymes involved in the biosynthesis of amino acids, nucleotides and coenzymes, indicating metabolic adaptation of the cells to the decreased growth rate at the lower temperature. The strongest cold-inducible gene encodes fatty acid desaturase, which forms unsaturated fatty acids from saturated phospholipid precursors, thereby increasing membrane fluidity. The cold-shock-induced increase of mRNA levels of the classical cold-shock genes cspB, cspC and cspD could be verified. Furthermore, besides many genes encoding proteins of unknown function, some genes encoding ribosomal proteins were transcriptionally up-regulated, which points to an adaptive reprogramming of the ribosomes under cold-shock conditions. Interestingly, the amount of mRNA specified by the operon ptb-bcd-buk-lpd-bkdA1-bkdA2-bkdB, which encodes enzymes involved in degradation of branched-chain amino acids, also increases after a temperature downshift. As cells utilize the isoleucine and valine degradation intermediates alpha-methylbutyryl-CoA and isobutyryl-CoA for synthesis of branched-chain fatty acids, this finding reflects the adaptation of membrane lipid composition, ensuring the maintenance of appropriate membrane fluidity at low temperatures. The results of the DNA array analyses were verified for several selected genes by RNA slot-blot analysis and compared with two-dimensional PAGE analyses.

Collaboration


Dive into the Ulrike Mäder's collaboration.

Top Co-Authors

Avatar

Michael Hecker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Uwe Völker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Georg Homuth

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Jörg Stülke

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Michael Lalk

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Dörte Becher

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Leif Steil

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Jan Maarten van Dijl

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Nicolas

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge