Ungyu Paik
Hanyang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ungyu Paik.
Nano Letters | 2010
Taeseup Song; Jianliang Xia; Jin Hyon Lee; Dong Hyun Lee; Moon Seok Kwon; Jae Man Choi; Jian Wu; Seok Kwang Doo; Hyuk Chang; Won Il Park; Dong Sik Zang; Hansu Kim; Yonggang Huang; Keh Chih Hwang; John A. Rogers; Ungyu Paik
Silicon is a promising candidate for electrodes in lithium ion batteries due to its large theoretical energy density. Poor capacity retention, caused by pulverization of Si during cycling, frustrates its practical application. We have developed a nanostructured form of silicon, consisting of arrays of sealed, tubular geometries that is capable of accommodating large volume changes associated with lithiation in battery applications. Such electrodes exhibit high initial Coulombic efficiencies (i.e., >85%) and stable capacity-retention (>80% after 50 cycles), due to an unusual, underlying mechanics that is dominated by free surfaces. This physics is manifested by a strongly anisotropic expansion in which 400% volumetric increases are accomplished with only relatively small (<35%) changes in the axial dimension. These experimental results and associated theoretical mechanics models demonstrate the extent to which nanoscale engineering of electrode geometry can be used to advantage in the design of rechargeable batteries with highly reversible capacity and long-term cycle stability.
Science | 2013
Hyo Won Kim; Hee Wook Yoon; Seon-Mi Yoon; Byung Min Yoo; Byung Kook Ahn; Young Hoon Cho; Hye Jin Shin; Hoichang Yang; Ungyu Paik; Jae-Young Choi; Ho Bum Park
Gas Separations When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. Stacked graphene and graphene oxide membranes prepared with gas flow channels exhibit tunable gas separation performance. Graphene is a distinct two-dimensional material that offers a wide range of opportunities for membrane applications because of ultimate thinness, flexibility, chemical stability, and mechanical strength. We demonstrate that few- and several-layered graphene and graphene oxide (GO) sheets can be engineered to exhibit the desired gas separation characteristics. Selective gas diffusion can be achieved by controlling gas flow channels and pores via different stacking methods. For layered (3- to 10-nanometer) GO membranes, tunable gas transport behavior was strongly dependent on the degree of interlocking within the GO stacking structure. High carbon dioxide/nitrogen selectivity was achieved by well-interlocked GO membranes in high relative humidity, which is most suitable for postcombustion carbon dioxide capture processes, including a humidified feed stream.
Nature | 2010
Jongseung Yoon; Sungjin Jo; Ik Su Chun; Inhwa Jung; Hoon Sik Kim; Matthew Meitl; Etienne Menard; Xiuling Li; J. J. Coleman; Ungyu Paik; John A. Rogers
Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.
Energy and Environmental Science | 2016
Xin-Yao Yu; Yi Feng; Buyuan Guan; Xiong Wen (David) Lou; Ungyu Paik
Electrochemical splitting of water provides an attractive way to produce hydrogen fuel. Unfortunately, the efficient and large-scale H2 production is still hindered by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode side of a water electrolyzer. Starting from metal–organic frameworks (MOFs), we demonstrate a template-engaged strategy to transform Ni–Ni Prussian blue analogue (PBA) nanoplates into porous carbon coated nickel phosphides nanoplates with mixed phases of Ni5P4 and Ni2P. For comparison, NiO and Ni(OH)2 porous nanoplates with the similar morphology have also been synthesized from the same precursor. Benefitting from their structural merits and the in situ formed catalytically active oxidized nickel species, the as-derived nickel phosphides manifest excellent electrocatalytic activity for OER superior to NiO and Ni(OH)2.
Science | 2015
Sheng Xu; Zheng Yan; Kyung In Jang; Wen Huang; Haoran Fu; Jeonghyun Kim; Zijun Wei; Matthew Flavin; Joselle M. McCracken; Renhan Wang; Adina Badea; Yuhao Liu; Dongqing Xiao; Guoyan Zhou; Jung Woo Lee; Ha Uk Chung; Huanyu Cheng; Wen Ren; Anthony Banks; Xiuling Li; Ungyu Paik; Ralph G. Nuzzo; Yonggang Huang; Yihui Zhang; John A. Rogers
Popping materials and devices from 2D into 3D Curved, thin, flexible complex three-dimensional (3D) structures can be very hard to manufacture at small length scales. Xu et al. develop an ingenious design strategy for the microfabrication of complex geometric 3D mesostructures that derive from the out-of-plane buckling of an originally planar structural layout (see the Perspective by Ye and Tsukruk). Finite element analysis of the mechanics makes it possible to design the two 2D patterns, which is then attached to a previously strained substrate at a number of points. Relaxing of the substrate causes the patterned material to bend and buckle, leading to its 3D shape. Science, this issue p. 154; see also p. 130 Complex, three-dimensional shapes emerge via the geometric buckling of two-dimensional micro/nanostructures. [Also see Perspective by Ye and Tsukruk] Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations.
Angewandte Chemie | 2014
Genqiang Zhang; Hao Bin Wu; Taeseup Song; Ungyu Paik; Xiong Wen David Lou
While the synthesis of TiO2 hollow structures is well-established, in most cases it is particularly difficult to control the crystallization of TiO2 in solution or by calcination. As a result, TiO2 hollow structures do not really exhibit enhanced lithium storage properties. Herein, we report a simple and cost-effective template-assisted method to synthesize anatase TiO2 hollow spheres composed of highly crystalline nanocrystals, in which carbonaceous (C) spheres are chosen as the removable template. The release of gaseous species from the combustion of C spheres may inhibit the growth of TiO2 crystallites so that instead small TiO2 nanocrystals are generated. The small size and high crystallinity of primary TiO2 nanoparticles and the high structural integrity of the hollow spheres gives rise to significant improvements in the cycling stability and rate performance of the TiO2 hollow spheres.
Energy and Environmental Science | 2011
Hyungkyu Han; Taeseup Song; Jae-Young Bae; Linda F. Nazar; Hansu Kim; Ungyu Paik
TiO2 nanofibers, TiO2 hollow nanofibers, and nitridated TiO2 hollow nanofibers were synthesized using a simple electrospinning method and subsequent nitridation treatment. The nitridated TiO2 hollow nanofibers showed twice higher rate capability compared to that of pristine TiO2 nanofibers at 5 C. This improvement is mainly attributed to shorter lithium ion diffusion length and high electronic conductivity along the surface of nitridated hollow nanofibers.
ACS Nano | 2012
Taeseup Song; Huanyu Cheng; Heechae Choi; Jin Hyon Lee; Hyungkyu Han; Dong Hyun Lee; Dong Su Yoo; Moon Seok Kwon; Jae Man Choi; Seok Gwang Doo; Hyuk Chang; Jianliang Xiao; Yonggang Huang; Won Il Park; Yong Chae Chung; Hansu Kim; John A. Rogers; Ungyu Paik
Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries.
Science Advances | 2016
Yu Ming Chen; Xin Yao Yu; Zhen Li; Ungyu Paik; Xiong Wen (David) Lou
Hierarchical MoS2 tubular structures internally wired by carbon nanotubes manifest superior lithium storage properties. Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g−1 at a current density of 0.1 A g−1, exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage.
Nano Letters | 2010
Jung Min Lee; Jae Woong Choung; Jaeseok Yi; Dong Hyun Lee; Monica Samal; Dong Kee Yi; Chul Ho Lee; Gyu-Chul Yi; Ungyu Paik; John A. Rogers; Won Il Park
We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.