Urszula Hibner
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Urszula Hibner.
Molecular and Cellular Biology | 2001
Olivier Zugasti; Wilfrid Rul; Pierre Roux; Carole Peyssonnaux; Alain Eychène; Thomas F. Franke; Philippe Fort; Urszula Hibner
ABSTRACT Signals from the extracellular matrix are essential for the survival of many cell types. Dominant-negative mutants of two members of Rho family GTPases, Rac1 and Cdc42, mimic the loss of anchorage in primary mouse fibroblasts and are potent inducers of apoptosis. This pathway of cell death requires the activation of both the p53 tumor suppressor and the extracellular signal-regulated mitogen-activated protein kinases (Erks). Here we characterize the proapoptotic Erk signal and show that it differs from the classically observed survival-promoting one by the intensity of the kinase activation. The disappearance of the GTP-bound forms of Rac1 and Cdc42 gives rise to proapoptotic, moderate activation of the Raf-MEK-Erk cascade via a signaling pathway involving the kinases phosphatidlyinositol 3-kinase and Akt. Moreover, concomitant activation of p53 and inhibition of Akt are both necessary and sufficient to signal anoikis in primary fibroblasts. Our data demonstrate that the GTPases of the Rho family control three major components of cellular signal transduction, namely, p53, Akt, and Erks, which collaborate in the induction of apoptosis due to the loss of anchorage.
Philosophical Transactions of the Royal Society B | 2015
C. Athena Aktipis; Amy M. Boddy; Gunther Jansen; Urszula Hibner; Michael E. Hochberg; Carlo C. Maley; Gerald S. Wilkinson
Multicellularity is characterized by cooperation among cells for the development, maintenance and reproduction of the multicellular organism. Cancer can be viewed as cheating within this cooperative multicellular system. Complex multicellularity, and the cooperation underlying it, has evolved independently multiple times. We review the existing literature on cancer and cancer-like phenomena across life, not only focusing on complex multicellularity but also reviewing cancer-like phenomena across the tree of life more broadly. We find that cancer is characterized by a breakdown of the central features of cooperation that characterize multicellularity, including cheating in proliferation inhibition, cell death, division of labour, resource allocation and extracellular environment maintenance (which we term the five foundations of multicellularity). Cheating on division of labour, exhibited by a lack of differentiation and disorganized cell masses, has been observed in all forms of multicellularity. This suggests that deregulation of differentiation is a fundamental and universal aspect of carcinogenesis that may be underappreciated in cancer biology. Understanding cancer as a breakdown of multicellular cooperation provides novel insights into cancer hallmarks and suggests a set of assays and biomarkers that can be applied across species and characterize the fundamental requirements for generating a cancer.
Evolutionary Applications | 2013
Frédéric Thomas; Daniel Fisher; Philippe Fort; Jean-Pierre Marie; Simon Daoust; Benjamin Roche; Christoph Grunau; Céline Cosseau; Guillaume Mitta; Stephen Baghdiguian; François Rousset; Patrice Lassus; Eric Assenat; Damien Grégoire; Dorothée Missé; Alexander Lorz; Frédérique Billy; William Vainchenker; François Delhommeau; Serge Koscielny; Ruoping Tang; Fanny Fava; Annabelle Ballesta; Thomas Lepoutre; Liliana Krasinska; Vjekoslav Dulic; Peggy Raynaud; Philippe Blache; Corinne Quittau-Prévostel; Emmanuel Vignal
Since the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology. The objective of this introduction is first to describe the basic ideas and concepts linking evolutionary biology to cancer. We then present four major fronts where the evolutionary perspective is most developed, namely laboratory and clinical models, mathematical models, databases, and techniques and assays. Finally, we discuss several of the most promising challenges and future prospects in this interdisciplinary research direction in the war against cancer.
Journal of Hepatology | 2012
Leila Akkari; Damien Grégoire; Nicolas Floc’h; Marie Moreau; Céline Hernandez; Yannick Simonin; Arielle R. Rosenberg; Patrice Lassus; Urszula Hibner
BACKGROUND & AIMS Apicobasal polarity, which is essential for epithelial structure and function, is targeted by several tumour-related pathogens and is generally perturbed in the course of carcinogenesis. Hepatitis C virus (HCV) infection is associated with a strong risk of hepatocellular carcinoma, typically preceded by dysplastic alterations of cell morphology. We investigated the molecular mechanisms and the functional consequences of HCV-driven perturbations of epithelial polarity. METHODS We used biochemical, genetic, and cell biology approaches to assess the impact of hepatitis C viral protein NS5A on the polarity and function of hepatocytes and hepatic progenitors. Transgenic animals and xenograft models served for in vivo validation of the results obtained in cell culture. RESULTS We found that expression of HCV-NS5A in primary hepatic precursors and in immortalized hepatocyte cell lines gave rise to profound modifications of cell polarity, leading to epithelial to mesenchymal transition (EMT). NS5A, either alone or in the context of the full complement of viral proteins in the course of infection, acted through activating Twist2, a transcriptional regulator of EMT. The effects of NS5A were additive to those of TGF-β, a cytokine abundant in diseased liver and highly relevant to HCV-related pathology. Moreover, NS5A cooperates with oncogenic Ras, giving rise to transformed, invasive cells that are highly tumorigenic in vivo. CONCLUSIONS Our data suggest that in the context of HCV infection, NS5A favors formation of preneoplastic lesions by disrupting cell polarity and additional oncogenic events cooperate with the viral protein to give rise to motile and invasive tumour cells.
Biochimica et Biophysica Acta | 2011
Aneta Kwiatkowska; Magdalena Kijewska; Maciej Lipko; Urszula Hibner; Bozena Kaminska
Human malignant glioblastomas are highly invasive tumors. Increased cell motility and degradation of the surrounding extracellular matrix are essential for tumor invasion. PI3K/Akt signaling pathway emerges as a common pathway regulating cellular proliferation, migration and invasion; however, its contribution to particular process and downstream cascades remain poorly defined. We have previously demonstrated that Cyclosporin A (CsA) affects glioblastoma invasion in organotypic brain slices and tumorigenicity in mice. Here we show that CsA impairs migration and invasion of human glioblastoma cells by downregulation of Akt phosphorylation. Interference with PI-3K/Akt signaling was crucial for CsA effect on invasion, because overexpression of constitutively active myr-Akt antagonized drug action. Furthermore, the drug was not effective in T98G glioblastoma cells with constitutively high level of phosphorylated Akt. CsA, comparably to pharmacological inhibitors of PI3K/Akt signaling (LY294002, A443654), reduced motility of glioblastoma cells, diminished MMP-2 gelatinolytic activity and MMP-2 and MT1-MMP expression. The latter effect was mimicked by overexpression of dominant negative Akt mutants. We demonstrate that CsA and LY294002 reduced MMP transcription partly via modulation of IκB phosphorylation and NFκB transcriptional activity. Those effects were not mediated by inhibition of calcineurin, a classical CsA target. Additionally, CsA reduced phosphorylation and activity of focal adhesion kinase that was associated with rapid morphological alterations, rearrangement of lamellipodia and impairment of MT1-MMP translocation to membrane protrusions. Our results document novel, Akt-dependent mechanisms of interference with motility/invasion of human glioblastoma cells: through a rapid modulation of cell adhesion and MT1-MMP translocation to membrane protrusions and delayed, partly NFκB-dependent, downregulation of MMP-2 and MT1-MMP expression. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Oncogene | 2000
Patrice Lassus; Pierre Roux; Olivier Zugasti; Alexandre Philips; Philippe Fort; Urszula Hibner
Apoptosis is a normal physiological process which eliminates cells that do not receive adequate extracellular signals. One of the pathways signalling apoptosis is controlled by the small GTPases of the Rho family, also involved in cell proliferation, differentiation and motility. Another major apoptosis signalling pathway involves the p53 tumour suppressor which is activated by a variety of stress and mediates growth arrest or apoptosis in normal cells. We show here that upon detachment from the extracellular matrix, fibroblasts undergo rapid apoptosis that can be rescued by constitutive activation of Rac1 and Cdc42Hs GTPases. Conversely, inhibition of Rac1 and Cdc42Hs efficiently triggers apoptosis in adherent cells. Interestingly, apoptosis is not observed in p53−/− cells either cultured in suspension or inhibited for Rac1 and Cdc42Hs activity. Moreover, Rac1 and Cdc42Hs extinction in normal cells activates endogenous p53. Using specific inhibitors of MAPK pathways, we demonstrate that, in our experimental system, p38 signals survival, while ERK activity is required for apoptosis. Our data constitute the first demonstration that Rac1 and Cdc42Hs control pathways that require simultaneous signalling through MAPK ERK and p53 to induce apoptosis.
Hepatology | 2009
Yannick Simonin; Olivier Disson; Hervé Lerat; Etienne Antoine; Fabien Binamé; Arielle R. Rosenberg; Solange Desagher; Patrice Lassus; Paulette Bioulac-Sage; Urszula Hibner
An unresolved question regarding the physiopathology of hepatitis C virus (HCV) infection is the remarkable efficiency with which host defenses are neutralized to establish chronic infection. Modulation of an apoptotic response is one strategy used by viruses to escape immune surveillance. We previously showed that HCV proteins down‐regulate expression of BH3‐only Bcl2 interacting domain (Bid) in hepatocytes of HCV transgenic mice. As a consequence, cells acquire resistance to Fas‐mediated apoptosis, which in turn leads to increased persistence of experimental viral infections in vivo. This mechanism might participate in the establishment of chronic infections and the resulting pathologies, including hepatocellular carcinoma. We now report that Bid is also down‐regulated in patients in the context of noncirrhotic HCV‐linked tumorigenesis and in the HCV RNA replicon system. We show that the nonstructural HCV viral protein NS5A is sufficient to activate a calpain cysteine protease, leading to degradation of Bid. Moreover, pharmacological inhibitors of calpains restore both the physiological levels of Bid and the sensitivity of cells toward a death receptor–mediated apoptotic signal. Finally, human HCV‐related tumors and hepatocytes from HCV transgenic mice that display low Bid expression contain activated calpains. Conclusion: Calpains activated by HCV proteins degrade Bid and thus dampen apoptotic signaling. These results suggest that inhibiting calpains could lead to an improved efficiency of immune‐mediated elimination of HCV‐infected cells. (Hepatology 2009.)
Journal of Cell Science | 2005
Delphine Haouzi; Stephen Baghdiguian; Guillaume Granier; Pierre Travo; Paul Mangeat; Urszula Hibner
Maintenance of epithelial cell shape and polarity determines many vital cell functions, including the appropriate response to external stimuli. Murine hepatocytes cultured in a three-dimensional Matrigel matrix formed highly polarized organoids characterized by specific localization of an ERM (ezrin/radixin/moesin) protein, radixin, at microvillus-lined membrane domains. These apical domains surrounded a lumen and were bordered by tight junctions. The hepatocyte organoids were functional as judged by the high level of albumin secretion and accumulation of bilirubin. Stimulation of the Fas/CD95 death receptor, which is highly hepatotoxic in vivo, was a strong inducer of apoptosis in the polarized organoids. This was in sharp contrast to the monolayer hepatocyte cultures, which were protected from death by exacerbated NF-κB signalling following engagement of the death receptors. Thus, hepatocytes in polarized, functional organoids modulate an intracellular signal transduction pathway, allowing the recapitulation of their physiological response to an apoptotic stimulus.
Evolutionary Applications | 2013
Michael E. Hochberg; Frédéric Thomas; Eric Assenat; Urszula Hibner
Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high‐risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.
Oncogene | 1999
Patrice Lassus; Christelle Bertrand; Olivier Zugasti; Jean-Philippe Chambon; Thierry Soussi; DanieÁ le Mathieu-Mahul; Urszula Hibner
The tumour suppressor p53 plays a complex role in the regulation of apoptosis. High levels of wild type p53 potentiate the apoptotic response, while physiological range, low levels of the protein have an anti-apoptotic activity in serum starved immortalized fibroblasts. Here we report that primary fibroblast-like cells that show normal growth control are also efficiently protected from apoptosis by the endogenous p53 activity. The capacity to inhibit apoptosis is not restricted to the wild type protein: the R→H175 p53 mutant fully retains the anti-apoptotic activity of the wild type p53, providing a possible explanation for its high oncogenicity. Using a series of point and deletion mutants of p53 under the control of tetracycline-regulated promoter we show that certain mutants, like the wild type, protect cells at low levels but lead to apoptosis when overexpressed. This latter effect is lost upon deletion of a proline-rich domain in the NH2 part of the protein. The anti-apoptotic activity can be mapped to the extreme carboxy-terminal part of the protein and is therefore independent of other well characterized p53 activities. Our results add a new level of complexity to the network of interactions mediated by p53 in normal physiology and pathology.