Usha R. Pendurthi
University of Texas Health Science Center at Tyler
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Usha R. Pendurthi.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1999
Usha R. Pendurthi; J. Todd Williams; L. Vijaya Mohan Rao
A number of studies suggest that moderate consumption of red wine may be more effective than other alcoholic beverages in decreasing the risk of coronary heart disease mortality. The phytochemical resveratrol found in wine, derived from grapes, has been thought to be responsible for cardiovascular benefits associated with wine consumption because it was shown to have antioxidant and antiplatelet activities. In the present investigation, we examined the effect of resveratrol on induction of tissue factor (TF) expression in vascular cells that were exposed to pathophysiological stimuli. The data presented herein show that resveratrol, in a dose-dependent manner, inhibited the expression of TF in endothelial cells stimulated with a variety of agonists, including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS). A similar inhibition of TF induction was also seen in LPS stimulated monocytes that were pretreated with resveratrol before their stimulation with LPS. In addition, resveratrol was shown to inhibit the LPS-induced expression of TNFalpha mRNA in endothelial cells and of TNFalpha and IL-1beta mRNA in monocytes. Nuclear run-on analysis in endothelial cells showed that resveratrol inhibited TF expression at the level of transcription. However, resveratrol did not significantly alter the binding of the transcription factors c-Fos/c-Jun and c-Rel/p65, the transcription factors required for the induction of TF promoter in both endothelial cells and monocytes. Similarly, resveratrol had no significant effect on the binding of NF-kappaB in endothelial cells stimulated with IL-1beta, TNFalpha, and LPS. Overall, our data show that resveratrol could effectively suppress the aberrant expression of TF and cytokines in vascular cells, but it requires further investigation to understand how resveratrol exerts its inhibitory effect.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2004
L. Vijaya Mohan Rao; Usha R. Pendurthi
How does tissue factor (TF), whose principle role is to support clotting factor VIIa (FVIIa) in triggering the coagulation cascade, affect various pathophysiological processes? One of the answers is that TF interaction with FVIIa not only initiates clotting but also induces cell signaling via activation of G-protein-coupled protease activated receptors (PARs). Recent studies using various cell model systems and limited in vivo systems are beginning to define how TF-VIIa-induced signaling regulates cellular behavior. Signaling pathways initiated by both TF-VIIa protease activation of PARs and phosphorylation of the TF-cytoplasmic domain appear to regulate cellular functions. In the present article, we review the emerging data on the mechanism of TF-mediated cell signaling and how it regulates various cellular responses, with particular focus on TF-VIIa protease-dependent signaling.
Journal of Biological Chemistry | 2007
Samit Ghosh; Usha R. Pendurthi; Anne Steinoe; Charles T. Esmon; L. Vijaya Mohan Rao
Although factor VII/factor VIIa (FVII/FVIIa) is known to interact with many non-vascular cells, activated monocytes, and endothelial cells via its binding to tissue factor (TF), the interaction of FVII/FVIIa with unperturbed endothelium and the role of this interaction in clearing FVII/FVIIa from the circulation are unknown. To investigate this, in the present study we examined the binding of radiolabeled FVIIa to endothelial cells and its subsequent internalization. 125I-FVIIa bound to non-stimulated human umbilical vein endothelial cells (HUVEC) in time- and dose-dependent manner. The binding is specific and independent of TF and negatively charged phospholipids. Protein C and monoclonal antibodies to endothelial cell protein C receptor (EPCR) blocked effectively 125I-FVIIa binding to HUVEC. FVIIa binding to EPCR is confirmed by demonstrating a marked increase in 125I-FVIIa binding to CHO cells that had been stably transfected with EPCR compared with the wild-type. Binding analysis revealed that FVII, FVIIa, protein C, and activated protein C (APC) bound to EPCR with similar affinity. FVIIa binding to EPCR failed to accelerate FVIIa activation of factor X or protease-activated receptors. FVIIa binding to EPCR was shown to facilitate FVIIa endocytosis. Pharmacological concentrations of FVIIa were found to impair partly the EPCR-dependent protein C activation and APC-mediated cell signaling. Overall, the present data provide convincing evidence that EPCR serves as a cellular binding site for FVII/FVIIa. Further studies are needed to evaluate the pathophysiological consequences and relevance of FVIIa binding to EPCR.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1997
Usha R. Pendurthi; J. Todd Williams; L. Vijaya Mohan Rao
Binding of plasma factor VII(a) to tissue factor (TF) initiates the coagulation cascade. In health, TF is not expressed in endothelial cells. However, endothelial cells express TF in response to lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF alpha), and other biological stimuli. TF expression by endothelial cells is implicated in thrombotic disorders in patients with a variety of clinical disorders. In the present study, we demonstrate that curcumin (diferulolylmethane), a known anticarcinogenic and anti-inflammatory agent, inhibited phorbol 12-myristate 13-acetate (PMA), LPS, TNF alpha, and thrombin-induced TF activity and TF gene transcription in human endothelial cells. The present data show that curcumin prevented the activation of c-Rel/p65, which is essential for TF gene activation in endothelial cells, by impairing the proteolytic degradation inhibitor protein, I kappa B alpha. The data also show that curcumin downregulated AP-1 binding activity. The present studies are the first to demonstrate that PMA, but not LPS, TNF alpha, and thrombin, induced Egr-1 binding to the second serum-responsive region (SRR-2) of TF promoter and that curcumin inhibited the PMA-induced Egr-1 binding to SRR-2. Overall, the data suggest that the anticarcinogenic and anti-inflammatory properties of curcumin may be related to its ability to inhibit cellular gene expression regulated by transcription factors NF-kappa B, AP-1, and Egr-1.
Journal of Thrombosis and Haemostasis | 2007
I. Del Conde; L. D. Bharwani; Dennis J. Dietzen; Usha R. Pendurthi; Perumal Thiagarajan; José A. López
Summary. Background: Trousseaus syndrome is a prothrombotic state associated with malignancy that is poorly understood pathophysiologically. Methods and Results: Here we report studies on the blood of a 55‐year‐old man with giant‐cell lung carcinoma who developed a severe form of Trousseaus syndrome. His clinical course was dominated by an extremely hypercoagulable state. Despite receiving potent antithrombotic therapy, he suffered eleven major arterial and venous thrombotic events over a 5 month period. We examined the patients blood for tissue factor (TF), the major initiator of coagulation, and found its concentration in his plasma to be forty‐one‐fold higher than the mean concentration derived from testing of 16 normal individuals. Conclusion: Almost all of the TF in the patients plasma was associated with cell‐derived microvesicles, likely shed by the cancer cells.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2002
Usha R. Pendurthi; Mylinh Ngyuen; Patricia Andrade-Gordon; Lars C. Petersen; L. Vijaya Mohan Rao
Objective—The plasminogen system has been proposed to participate in vascular remodeling and angiogenesis. Although plasmin-mediated proteolysis could contribute these processes, proteolytic targets for plasmin and their downstream effector molecules are yet to be fully defined. The aim of the present study was to elucidate potential mechanisms by which plasmin affects various cellular processes. Methods and Results—Plasmin upregulated the expression of Cyr61, a growth factor–like gene that has been implicated in cell proliferation, adhesion, and migration. Plasmin-induced gene expression is dependent on its proteolytic activity and requires its binding to cells. Studies that used wild-type fibroblasts and fibroblasts derived from PAR-1– and PAR-2–deficient mice showed that plasmin induced Cyr61 gene expression in wild-type fibroblasts and PAR-2–deficient cells but not in PAR-1–deficient cells. Consistent with this, plasmin induced the activation of p44/42 mitogen-activated protein kinase in wild-type, PAR-2 −/− cells but not in PAR-1 −/− cells. In contrast with thrombin, plasmin failed to induce Ca2+ signaling in fibroblasts. Conclusions—Plasmin induced an angiogenic and wound-healing promoter, Cyr61, in fibroblasts through activation of PAR-1. Plasmin-induced Cyr61 expression is mediated via the p44/42 mitogen-activated protein kinase pathway independent of Ca2+ signaling.
Thrombosis Research | 2000
Usha R. Pendurthi; L. Vijaya Mohan Rao
The transcription factor early growth response-1 gene product (Egr-1) is a member of the family of immediate early response genes and regulates a number of pathophysiologically relevant genes in vasculature that are involved in growth, differentiation, immune response, wound healing, and blood clotting. In the present study, we investigated the effect of curcumin, a natural plant phenolic compound known to exhibit anticarcinogenic, antioxidant, and antiinflammatory properties, on Egr-1 expression in endothelial cells and fibroblasts. Gel mobility shift assays showed that pretreatment of endothelial cells and fibroblasts with curcumin suppressed phorbol 12-myristate 13-acetate and serum-induced Egr-1 binding activity to the consensus Egr-1 binding site and also to the Egr-1 binding site present in the promoter of tissue factor gene. Western blot analysis revealed that curcumin inhibited phorbol 12-myristate 13-acetate-induced de novo synthesis of Egr-1 protein in endothelial cells. Suppression of Egr-1 protein expression in curcumin-treated cells stemmed from the suppression of Egr-1 mRNA. Northern blot analysis showed that curcumin inhibited serum and phorbol 12-myristate 13-acetate induced expression of tissue factor and urokinase-type plasminogen activator receptor mRNA in fibroblasts. Cumulatively, the data show that curcumin suppresses the induction of transcription factor Egr-1 and thereby modulates the expression of Egr-1-regulated genes in endothelial cells and fibroblasts.
Blood | 2014
L. Vijaya Mohan Rao; Charles T. Esmon; Usha R. Pendurthi
Endothelial cell protein C receptor (EPCR) was first identified and isolated as a cellular receptor for protein C on endothelial cells. EPCR plays a crucial role in the protein C anticoagulant pathway by promoting protein C activation. In the last decade, EPCR has received wide attention after it was discovered to play a key role in mediating activated protein C (APC)-induced cytoprotective effects, including antiapoptotic, anti-inflammatory, and barrier stabilization. APC elicits cytoprotective signaling through activation of protease activated receptor-1 (PAR1). Understanding how EPCR-APC induces cytoprotective effects through activation of PAR1, whose activation by thrombin is known to induce a proinflammatory response, has become a major research focus in the field. Recent studies also discovered additional ligands for EPCR, which include factor VIIa, Plasmodium falciparum erythrocyte membrane protein, and a specific variant of the T-cell receptor. These observations open unsuspected new roles for EPCR in hemostasis, malaria pathogenesis, innate immunity, and cancer. Future research on these new discoveries will undoubtedly expand our understanding of the role of EPCR in normal physiology and disease, as well as provide novel insights into mechanisms for EPCR multifunctionality. Comprehensive understanding of EPCR may lead to development of novel therapeutic modalities in treating hemophilia, inflammation, cerebral malaria, and cancer.
Journal of Biological Chemistry | 2007
Athanasios N. Athanasopoulos; Darius Schneider; Tanja Keiper; Volker Alt; Usha R. Pendurthi; Ute M. Liegibel; Ulrike Sommer; Peter P. Nawroth; Christian Kasperk; Triantafyllos Chavakis
Angiogenesis is indispensable during fracture repair, and vascular endothelial growth factor (VEGF) is critical in this process. CCN1 (CYR61) is an extracellular matrix signaling molecule that has been implicated in neovascularization through its interactions with several endothelial integrin receptors. CCN1 has been shown to be up-regulated during the reparative phase of fracture healing; however, the role of CCN1 therein remains unclear. Here, the regulation of CCN1 expression in osteoblasts and the functional consequences thereof were studied. Stimulation of osteoblasts with VEGF resulted in a dose- and time-dependent up-regulation of CCN1 mRNA and protein. An up-regulation of both cell surface-associated CCN1 as well as extracellular matrix-associated CCN1 in osteoblasts was found. The supernatant of VEGF-prestimulated osteoblasts was chemotactic for endothelial cells, increasing their migration and stimulated capillary-like sprout formation. These effects could be attributed to the presence of CCN1 in the osteoblast supernatant as they were prevented by an antibody against CCN1 or by small interfering RNA-mediated knockdown of osteoblast CCN1. Moreover, the supernatant of VEGF-prestimulated osteoblasts induced angiogenesis in Matrigel plugs in vivo in a CCN1-dependent manner. In addition, blockade of CCN1 prevented bone fracture healing in mice. Taken together, the present work demonstrates a potential paracrine loop consisting of the VEGF-mediated up-regulation of CCN1 in osteoblasts that attracts endothelial cells and promotes angiogenesis. Such a loop could be operative during fracture healing.
Blood | 2011
Prosenjit Sen; Ramakrishnan Gopalakrishnan; Hema Kothari; Shiva Keshava; Curtis A. Clark; Charles T. Esmon; Usha R. Pendurthi; L. Vijaya Mohan Rao
Recent studies have shown that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR), a cellular receptor for protein C and activated protein C, but the physiologic significance of this interaction is unclear. In the present study, we show that FVIIa, upon binding to EPCR on endothelial cells, activates endogenous protease activated receptor-1 (PAR1) and induces PAR1-mediated p44/42 mitogen-activated protein kinase (MAPK) activation. Pretreatment of endothelial cells with FVIIa protected against thrombin-induced barrier disruption. This FVIIa-induced, barrier-protective effect was EPCR dependent and did not involve PAR2. Pretreatment of confluent endothelial monolayers with FVIIa before thrombin reduced the development of thrombin-induced transcellular actin stress fibers, cellular contractions, and paracellular gap formation. FVIIa-induced p44/42 MAPK activation and the barrier-protective effect are mediated via Rac1 activation. Consistent with in vitro findings, in vivo studies using mice showed that administration of FVIIa before lipopolysaccharide (LPS) treatment attenuated LPS-induced vascular leakage in the lung and kidney. Overall, our present data provide evidence that FVIIa bound to EPCR on endothelial cells activates PAR1-mediated cell signaling and provides a barrier-protective effect. These findings are novel and of great clinical significance, because FVIIa is used clinically for the prevention of bleeding in hemophilia and other bleeding disorders.