Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ute Frevert is active.

Publication


Featured researches published by Ute Frevert.


Cell | 1997

TRAP Is Necessary for Gliding Motility and Infectivity of Plasmodium Sporozoites

Ali A. Sultan; Vandana Thathy; Ute Frevert; Kathryn J. H. Robson; Andrea Crisanti; Victor Nussenzweig; Ruth S. Nussenzweig; Robert Ménard

Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By gene targeting in a rodent Plasmodium, we demonstrate that TRAP is critical for sporozoite infection of the mosquito salivary glands and the rat liver, and is essential for sporozoite gliding motility in vitro. This suggests that in Plasmodium sporozoites, and likely in other Apicomplexa, gliding locomotion and cell invasion have a common molecular basis.


Cell | 1992

The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites

Carla Cerami; Ute Frevert; Photini Sinnis; Béla Takács; Pedro Clavijo; Manuel J. Santos; Victor Nussenzweig

Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. We show here that recombinant Plasmodium falciparum circumsporozoite protein (CS) binds specifically to regions of the plasma membrane of hepatocytes exposed to circulating blood in the Disse space. No binding has been detected in other organs, or even in other regions of the hepatocyte membrane. The interaction of CS with hepatocytes, as well as sporozoite invasion of HepG2 cells, is inhibited by synthetic peptides representing the evolutionarily conserved region II of CS. We conclude that region II is a sporozoite ligand for hepatocyte receptors localized to the basolateral domain of the plasma membrane. Our findings provide a rational explanation for the target cell specificity of malaria sporozoites.


PLOS Biology | 2005

Intravital observation of Plasmodium berghei sporozoite infection of the liver.

Ute Frevert; Sabine Engelmann; Sergine Zougbédé; Jörg Stange; Bruce Ng; Kai Matuschewski; Leonard Liebes; Herman Yee

Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.


PLOS Pathogens | 2007

Release of Hepatic Plasmodium yoelii Merozoites into the Pulmonary Microvasculature

Kerstin Baer; Christian Klotz; Stefan H. I. Kappe; Thomas Schnieder; Ute Frevert

Plasmodium undergoes one round of multiplication in the liver prior to invading erythrocytes and initiating the symptomatic blood phase of the malaria infection. Productive hepatocyte infection by sporozoites leads to the generation of thousands of merozoites capable of erythrocyte invasion. Merozoites are released from infected hepatocytes as merosomes, packets of hundreds of parasites surrounded by host cell membrane. Intravital microscopy of green fluorescent protein–expressing P. yoelii parasites showed that the majority of merosomes exit the liver intact, adapt a relatively uniform size of 12–18 μm, and contain 100–200 merozoites. Merosomes survived the subsequent passage through the right heart undamaged and accumulated in the lungs. Merosomes were absent from blood harvested from the left ventricle and from tail vein blood, indicating that the lungs effectively cleared the blood from all large parasite aggregates. Accordingly, merosomes were not detectable in major organs such as brain, kidney, and spleen. The failure of annexin V to label merosomes collected from hepatic effluent indicates that phosphatidylserine is not exposed on the surface of the merosome membrane suggesting the infected hepatocyte did not undergo apoptosis prior to merosome release. Merosomal merozoites continued to express green fluorescent protein and did not incorporate propidium iodide or YO-PRO-1 indicating parasite viability and an intact merosome membrane. Evidence of merosomal merozoite infectivity was provided by hepatic effluent containing merosomes being significantly more infective than blood with an identical low-level parasitemia. Ex vivo analysis showed that merosomes eventually disintegrate inside pulmonary capillaries, thus liberating merozoites into the bloodstream. We conclude that merosome packaging protects hepatic merozoites from phagocytic attack by sinusoidal Kupffer cells, and that release into the lung microvasculature enhances the chance of successful erythrocyte invasion. We believe this previously unknown part of the plasmodial life cycle ensures an effective transition from the liver to the blood phase of the malaria infection.


Molecular Microbiology | 2002

Proteoglycans mediate malaria sporozoite targeting to the liver

Gabriele Pradel; Shivani Garapaty; Ute Frevert

Malaria sporozoites are rapidly targeted to the liver where they pass through Kupffer cells and infect hepatocytes, their initial site of replication in the mammalian host. We show that sporozoites, as well as their major surface proteins, the CS protein and TRAP, recognize distinct cell type‐specific surface proteoglycans from primary Kupffer cells, hepatocytes and stellate cells, but not from sinusoidal endothelia. Recombinant Plasmodium falciparum CS protein and TRAP bind to heparan sulphate on hepatocytes and both heparan and chondroitin sulphate proteoglycans on stellate cells. On Kupffer cells, CS protein predominantly recognizes chondroitin sulphate, whereas TRAP binding is glycosaminoglycan independent. Plasmodium berghei sporozoites attach to heparan sulphate on hepatocytes and stellate cells, whereas Kupffer cell recognition involves both chondroitin sulphate and heparan sulphate proteoglycans. CS protein also interacts with secreted proteoglycans from stellate cells, the major producers of extracellular matrix in the liver. In situ binding studies using frozen liver sections indicate that the majority of the CS protein binding sites are associated with these matrix proteoglycans. Our data sug‐gest that sporozoites are first arrested in the sinusoid by binding to extracellular matrix proteoglycans and then recognize proteoglycans on the surface of Kupffer cells, which they use to traverse the sinusoidal cell barrier.


Cellular Microbiology | 2007

Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver

Kerstin Baer; Michael Roosevelt; Allen B. Clarkson; Nico van Rooijen; Thomas Schnieder; Ute Frevert

Previous studies suggested Plasmodium sporozoites infect hepatocytes after passing through Kupffer cells, but proof has been elusive. Here we present new information strengthening that hypothesis. We used homozygous op/op mice known to have few Kupffer cells because they lack macrophage colony stimulating factor 1 required for macrophage maturation due to a deactivating point mutation in the osteopetrosis gene. We found these mice to have 77% fewer Kupffer cells and to exhibit reduced clearance of colloidal carbon particles compared with heterozygous phenotypically normal littermates. Using a novel quantitative reverse transcription polymerase chain reaction assay for P. yoelii 18S rRNA, we found liver infection of op/op mice to be decreased by 84% compared with controls. However, using another way of limiting Kupffer cells, treatment with liposome‐encapsulated clodronate, infection of normal mice was enhanced seven‐ to 15‐fold. This was explained by electron microscopy showing temporary gaps in the sinusoidal cell layer caused by this treatment. Thus, Kupffer cell deficiency in op/op mice decreases sporozoite infection by reducing the number of portals to the liver parenchyma, whereas clodronate increases sporozoite infection by opening portals and providing direct access to hepatocytes. Together these data provide strong support for the hypothesis that Kupffer cells are the portal for sporozoites to hepatocytes and critical for the onset of a malaria infection.


PLOS Pathogens | 2012

Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria

Adéla Nacer; Alexandru Movila; Kerstin Baer; Sebastian A. Mikolajczak; Stefan H. I. Kappe; Ute Frevert

Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.


Parasitology | 1995

The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH.

S. Tomlinson; F. Vandekerckhove; Ute Frevert; V. Nussenzweig

Following cell invasion, Trypanosoma cruzi trypomastigotes transform into amastigotes, which are the mammalian replicative forms of the parasite. Although amastigotes represent a critical stage in the life-cycle of T. cruzi, little is known of the factors controlling trypomastigote to amastigote transformation. Kanbera et al. (1990) observed that exposure of trypomastigotes to acidic pH induced their transformation into rounded forms resembling amastigotes. We confirm their observation and, using two strains of T. cruzi, establish that these transformants are ultrastructurally and biochemically indistinguishable from natural amastigotes. Incubation of trypomastigotes in medium at pH 5.0 for 2 h was sufficient to trigger their transformation into forms resembling amastigotes. Electron microscopical analysis confirmed that the kinetoplast structure, and general morphological features of the acid-induced, extracellular amastigotes were indistinguishable from those of intracellular-derived amastigotes. The extracellular transformation was accompanied by the acquisition of the stage-specific surface antigen of the naturally transformed amastigotes (Ssp-4), and loss of a stage-specific trypomastigote antigen (Ssp-3). Trypomastigotes incubated at neutral pH did not transform into amastigotes, and did not acquire the Ssp-4 epitope or lose the Ssp-3 epitope. Finally, acid-induced amastigotes subsequently incorporated [3H]thymidine into their DNA, indicating that the important replicative property of intracellular amastigotes is also exhibited by these in vitro transformants. This effect of low pH appears to be of physiological relevance, and acid-induced extracellular transformation appears to represent a valid experimental technique for studies of the molecular mechanisms involved in the differentiation process.


Cellular Microbiology | 2006

A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands.

Svetlana Korochkina; Catherine Barreau; Gabriele Pradel; Erin D. Jeffery; Jun Li; Ramya Natarajan; Jeffrey Shabanowitz; Donald F. Hunt; Ute Frevert; Kenneth D. Vernick

We describe a previously unrecognized protein family from Aedes and Anopheles mosquitoes, here named SGS proteins. There are no SGS homologues in Drosophila or other eukaryotes, but SGS presence in two mosquito genera suggests that the protein family is widespread among mosquitoes. Ae. aegypti aaSGS1 mRNA and protein are salivary gland specific, and protein is localized in the basal lamina covering the anatomical regions that are preferentially invaded by malaria sporozoites. Anti‐aaSGS1 antibodies inhibited sporozoite invasion into the salivary glands in vivo, confirming aaSGS1 as a candidate sporozoite receptor. By homology to aaSGS1 we identified the complete complement of four SGS genes in An. gambiae, which were not recognized in the genome annotation. Two An. gambiae SGS genes display salivary gland specific expression like aaSGS1. Bioinformatic analysis predicts that SGS proteins possess heparin‐binding domains, and have among the highest density of tyrosine sulphation sites of all An. gambiae proteins. The major sporozoite surface proteins (CS and TRAP) also bind heparin, and interact with sulphoconjugates during liver cell invasion. Thus, we speculate that sporozoite invasion of mosquito salivary glands and subsequently the vertebrate liver may share similar mechanisms based on sulphation. Phylogenomic analysis suggests that an SGS ancestor was involved in a lateral gene transfer.


The EMBO Journal | 1998

Malaria circumsporozoite protein inhibits protein synthesis in mammalian cells

Ute Frevert; Mary R. Galinski; Frank-Ulrich Hügel; Nahum Allon; Hans Schreier; Sergey Smulevitch; Mehdi Shakibaei; Pedro Clavijo

Native Plasmodium circumsporozoite (CS) protein, translocated by sporozoites into the cytosol of host cells, as well as recombinant CS constructs introduced into the cytoplasm by liposome fusion or transient transfection, all lead to inhibition of protein synthesis in mammalian cells. The following findings suggest that this inhibition of translation is caused by a binding of the CS protein to ribosomes. (i) The distribution of native CS protein translocated by sporozoites into the cytoplasm as well as microinjected recombinant CS protein suggests association with ribosomes. (ii) Recombinant CS protein binds to RNase‐sensitive sites on rough microsomes. (iii) Synthetic peptides representing the conserved regions I and II‐plus of the P.falciparum CS protein displace recombinant CS protein from rough microsomes with dissociation constants in the nanomolar range. (iv) Synthetic peptides representing region I from the P.falciparum CS protein and region II‐plus from the P.falciparum, P.berghei or P.vivax CS protein inhibit in vitro translation. We propose that Plasmodium manipulates hepatocyte protein synthesis to meet the requirements of a rapidly developing schizont. Since macrophages appear to be particularly sensitive to the presence of CS protein in the cytosol, inhibition of translation may represent a novel immune evasion mechanism of Plasmodium.

Collaboration


Dive into the Ute Frevert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Cerami

Kenneth S. Warren Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Photini Sinnis

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge