Uwe Motschmann
Braunschweig University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uwe Motschmann.
Astronomy and Astrophysics | 2004
J.-M. Grießmeier; A. Stadelmann; T. Penz; H. Lammer; Franck Selsis; Ignasi Ribas; E. F. Guinan; Uwe Motschmann; H. K. Biernat; W. W. Weiss
We study the interaction between the planetary magnetosphere and atmosphere of the close-in extrasolar planets HD 209458b and OGLE-TR-56b with the stellar wind during the evolution of their host stars. Recent astrophysical observations of solar-like stars indicate that the radiation and particle environments of young stars are orders of magnitudes larger than for stars with ages comparable to the sun (∼4.6 Gyr). We model the interaction for the present and for early evolutionary stages, showing that it is possible that Hot Jupiters have an ionosphere-stellar wind interaction like Venus, Our study suggests that the internal magnetic field of exoplanets orbiting close to their host stars may be very weak due to tidal locking. The magnetic moments can be less than one tenth of the value presently observed for the rapidly rotating planet Jupiter. We find that the stronger stellar wind of younger solar-type stars compresses the magnetosphere to a standoff distance at which the ionized part of the upper atmosphere, hydrodynamically expanded by the XUV-flux, builds an obstacle. Because of a much larger stellar wind particle flux during the first ∼0.5 Gyr after the host stars arrived on the Zero-Age-Main-Sequence, Hot Jupiters may have not been protected by their intrinsic magnetic fields, even if one neglects the effect of tidal locking. In such a case, the unshielded upper atmosphere will be affected by different ionization and non-thermal ion loss processes. This contributes to the estimated neutral hydrogen loss rates of about ≥10 10 g/s of the observed expanded exosphere of HD 209458b (Vidal-Madjar et al. 2003) and will be an ionized part of the estimated upper energy-limited neutral hydrogen loss rates of about 10 12 g/s (Lammer et al. 2003a).
Space Science Reviews | 2000
K. Szego; K.-H. Glassmeier; R. Bingham; A. T. Bogdanov; Christian Fischer; G. Haerendel; Armando L. Brinca; T. E. Cravens; E. Dubinin; K. Sauer; L. A. Fisk; Tamas I. Gombosi; N. A. Schwadron; Phil Isenberg; M. A. Lee; C. Mazelle; E. Möbius; Uwe Motschmann; V. D. Shapiro; Bruce T. Tsurutani; G. P. Zank
In space plasmas the phenomenon of mass loading is common. Comets are one of the most evident objects where mass loading controls to a large extent the structure and dynamics of its plasma environment. New charged material is implanted to the fast streaming solar wind by planets, moons, other solar system objects, and even by the interstellar neutral gas flowing through our solar system. In this review we summarize both the current observations and the relevant theoretical approaches. First we survey the MHD methods, starting with a discussion how mass loading affects subsonic and supersonic gasdynamics flows, continuing this with single and multi-fluid MHD approaches to describe the flow when mass, momentum and energy is added, and we finish this section by the description of mass loaded shocks. Next we consider the kinetic approach to the same problem, discussing wave excitations, pitch angle and energy scattering in linear and quasi-linear approximations. The different descriptions differ in assumptions and conclusions; we point out the differences, but it is beyond the scope of the paper to resolve all the conflicts. Applications of these techniques to comets, planets, artificial ion releases, and to the interplanetary neutrals are reviewed in the last section, where observations are also compared with models, including hybrid simulations as well. We conclude the paper with a summary of the most important open, yet unsolved questions.
Nature | 2007
T.-L. Zhang; M. Delva; W. Baumjohann; H. U. Auster; C. M. Carr; C. T. Russell; S. Barabash; M. A. Balikhin; K. Kudela; G. Berghofer; H. K. Biernat; H. Lammer; Herbert I. M. Lichtenegger; W. Magnes; R. Nakamura; K. Schwingenschuh; M. Volwerk; Z. Vörös; W. Zambelli; K.-H. Fornacon; K.-H. Glassmeier; I. Richter; A. Balogh; H. Schwarzl; Simon Pope; J. K. Shi; C. Wang; Uwe Motschmann; J.-P. Lebreton
Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere2,3. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.
Physics of Plasmas | 2012
Daniel Verscharen; Eckart Marsch; Uwe Motschmann; Joachim Müller
The nature of solar wind turbulence in the dissipation range at scales much smaller than the large magnetohydrodynamic (MHD) scales remains under debate. Here, a two-dimensional model based on the hybrid code abbreviated as A.I.K.E.F. is presented, which treats massive ions as particles obeying the kinetic Vlasov equation and massless electrons as a neutralizing fluid. Up to a certain wavenumber in the MHD regime, the numerical system is initialized by assuming a superposition of isotropic Alfven waves with amplitudes that follow the empirically confirmed spectral law of Kolmogorov. Then, turbulence develops and energy cascades into the dispersive spectral range, where also dissipative effects occur. Under typical solar wind conditions, weak turbulence develops as a superposition of normal modes in the kinetic regime. Spectral analysis in the direction parallel to the background magnetic field reveals a cascade of left-handed Alfven/ion-cyclotron waves up to wave vectors where their resonant absorption sets in, as well as a continuing cascade of right-handed fast-mode and whistler waves. Perpendicular to the background field, a broad turbulent spectrum is found to be built up of fluctuations having a strong compressive component. Ion-Bernstein waves seem to be possible normal modes in this propagation direction for lower driving amplitudes. Also, signatures of short-scale pressure-balanced structures (very oblique slow-mode waves) are found.The nature of solar wind turbulence in the dissipation range at scales much smaller than the large magnetohydrodynamic (MHD) scales remains under debate. Here, a two-dimensional model based on the hybrid code abbreviated as A.I.K.E.F. is presented, which treats massive ions as particles obeying the kinetic Vlasov equation and massless electrons as a neutralizing fluid. Up to a certain wavenumber in the MHD regime, the numerical system is initialized by assuming a superposition of isotropic Alfven waves with amplitudes that follow the empirically confirmed spectral law of Kolmogorov. Then, turbulence develops and energy cascades into the dispersive spectral range, where also dissipative effects occur. Under typical solar wind conditions, weak turbulence develops as a superposition of normal modes in the kinetic regime. Spectral analysis in the direction parallel to the background magnetic field reveals a cascade of left-handed Alfven/ion-cyclotron waves up to wave vectors where their resonant absorption se...
Geophysical Research Letters | 2011
Y. Narita; S. P. Gary; Shinji Saito; Karl-Heinz Glassmeier; Uwe Motschmann
Frequency versus wave number diagram of turbulent magnetic fluctuations in the solar wind was determined for the first time in the wide range over three decades using four Cluster spacecraft. Almost all of the identified waves propagate quasi‐perpendicular to the mean magnetic field at various phase speeds, accompanied by a transition from the dominance of outward propagation from the Sun at longer wavelengths into mixture of counter‐propagation at shorter wavelengths. Frequency‐wave number diagram exhibits largely scattered populations with only weak agreement with magnetosonic and whistler waves. Clear identification of a specific normal mode is difficult, suggesting that nonlinear energy cascade is operating even on small‐scale fluctuations.
Annales Geophysicae | 2015
I. Richter; C. Koenders; H. U. Auster; Dennis Frühauff; C. Götz; Philip Heinisch; C. Perschke; Uwe Motschmann; Bernd Stoll; Kathrin Altwegg; J. L. Burch; C. M. Carr; E. Cupido; Anders Eriksson; P. Henri; R. Goldstein; J.-P. Lebreton; P. Mokashi; Z. Nemeth; H. Nilsson; Martin Rubin; K. Szego; Bruce T. Tsurutani; Claire Vallat; M. Volwerk; K.-H. Glassmeier
Abstract. We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
Astronomy and Astrophysics | 2005
S. Preusse; A. Kopp; Jörg Büchner; Uwe Motschmann
Close-in extrasolar planets of Sun-like stars are exposed to stellar wind conditions that differ considerably from those for planets in the solar system. Unfortunately, these stellar winds belong to the still unknown parameters of these planetary systems. On the other hand, they play a crucial role in a number of star-planet interaction processes that may lead to observable radiation events. In order to lay a foundation for the investigation of such interaction processes, we estimate stellar wind parameters on the basis of the solar wind model by Weber & Davis and study the implications of the stellar magnetic fields. Our results suggest that in contrast to the solar system planets, some close-in extrasolar planets may be obstacles in a sub- Alfvenic stellar wind flow. In this case, the stellar wind magnetic pressure is comparable to or even larger than the dynamic flow pressure. We discuss possible consequences of these findings for the wind-exoplanet interactions. Further, we derive upper limit estimates for the energies such stellar winds can deposit in the exoplanetary magnetospheres. We finally discuss the implications the sub-Alfvenic environment may have on the star-planet interaction.
Journal of Geophysical Research | 1993
Karl-Heintz Glassmeier; Uwe Motschmann; C. Mazelle; F. M. Neubauer; K. Sauer; S. A. Fuselier; Mario H. Acuna
Large-amplitude ultralow-frequency wave structures observed on both sides of the magnetic pileup boundary of comet P/Halley during the flyby of the Giotto spacecraft have been analyzed using suprathermal electron density and magnetic field observations. Upstream of the boundary, electron density and magnetic field magnitude variations are anticorrelated, while in the pileup region these quantities are clearly correlated. Both in front of and behind the pileup boundary the observed waves are quasi-perpendicular wave structures as a minimum variance analysis shows. A detailed comparison of our observations in the prepileup region with theoretical and numerical results shows that the mirror mode mode waves may have been generated by a mirror instability driven by the pressure anisotropy of the ring-type distributions of the heavy (water group) pickup cometary ions. A mean wavelength λ1 = 2071 km is found, which is about 4 times the water group ion thermal gyroradius. For the fast mode wave structures in the pileup region, analysis of wave propagation on both sides of the pileup boundary shows that mode conversion from the mirror mode to fast mode type waves at the boundary is not a possible source mechanism. However, we show that the fast mode waves may be interpreted as stationary wave structures in a multifluid plasma. The wavelength λ2 = 1141 km derived from the observations, when using the stationary wave hypothesis, is in good agreement with the theoretical expected wave length λtheo = (774 ± 506) km computed from available ion observations.
Measurement Science and Technology | 2002
H. U. Auster; K.-H. Fornacon; E. Georgescu; K.-H. Glassmeier; Uwe Motschmann
A simple analytical model for the calibration of a flux-gate magnetometer using relative sensor motion in a constant magnitude magnetic field (B) is presented. Sensor motion is parametrized in terms of elementary rotations about one axis. The number of elementary rotations constitutes the number of degrees of freedom of the motion. A generalization is performed by investigating cases with known/unknown B, one/several different values of B, one/several degrees of freedom. The maximum number of calibration parameters, which can be determined in each case, is established. The conclusion is that the determination of all calibration parameters, i.e. an absolute calibration of the instrument, is already possible if the relative motion has at least two degrees of freedom at a known, constant B value. Two experimental applications of the model are described briefly.
Earth Moon and Planets | 2002
T. Bagdonat; Uwe Motschmann
Plasma structures resulting from the solar wind interaction with weak comets are discussed. Numerical simulations using a newly developed hybrid code are presented. The simulations are primarily applied to quantitative data for comet Wirtanen, which will be the target of the Rosetta mission. It is expected that Wirtanen is very weak during the first encounter. The main purpose is the discussion of the different features of the plasma environment, such as the structured cycloidal plasma tail and non-LINEAR Mach cones typical for weak comets and their relation to structures like shocklets, bow shock, diamagnetic cavity and the “classical” magnetotail found at stronger comets. Furthermore, the sensitivity of these various features in dependence on the plasma parameters is investigated.