Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Warnken is active.

Publication


Featured researches published by Uwe Warnken.


Nature | 2011

Linear ubiquitination prevents inflammation and regulates immune signalling

Björn Gerlach; Stefanie M. Cordier; Anna C. Schmukle; Christoph H. Emmerich; Eva Rieser; Tobias Haas; Andrew I. Webb; James A Rickard; Holly Anderton; W. Wei-Lynn Wong; Ueli Nachbur; Lahiru Gangoda; Uwe Warnken; Anthony W. Purcell; John Silke; Henning Walczak

Members of the tumour necrosis factor (TNF) receptor superfamily have important functions in immunity and inflammation. Recently linear ubiquitin chains assembled by a complex containing HOIL-1 and HOIP (also known as RBCK1 and RNF31, respectively) were implicated in TNF signalling, yet their relevance in vivo remained uncertain. Here we identify SHARPIN as a third component of the linear ubiquitin chain assembly complex, recruited to the CD40 and TNF receptor signalling complexes together with its other constituents, HOIL-1 and HOIP. Mass spectrometry of TNF signalling complexes revealed RIP1 (also known as RIPK1) and NEMO (also known as IKKγ or IKBKG) to be linearly ubiquitinated. Mutation of the Sharpin gene (Sharpincpdm/cpdm) causes chronic proliferative dermatitis (cpdm) characterized by inflammatory skin lesions and defective lymphoid organogenesis. Gene induction by TNF, CD40 ligand and interleukin-1β was attenuated in cpdm-derived cells which were rendered sensitive to TNF-induced death. Importantly, Tnf gene deficiency prevented skin lesions in cpdm mice. We conclude that by enabling linear ubiquitination in the TNF receptor signalling complex, SHARPIN interferes with TNF-induced cell death and, thereby, prevents inflammation. Our results provide evidence for the relevance of linear ubiquitination in vivo in preventing inflammation and regulating immune signalling.


Molecular Cell | 2009

Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction.

Tobias Haas; Christoph H. Emmerich; Björn Gerlach; Anna C. Schmukle; Stefanie M. Cordier; Eva Rieser; Rebecca Feltham; James E. Vince; Uwe Warnken; Till Wenger; Ronald Koschny; David Komander; John Silke; Henning Walczak

TNF is a key inflammatory cytokine. Using a modified tandem affinity purification approach, we identified HOIL-1 and HOIP as functional components of the native TNF-R1 signaling complex (TNF-RSC). Together, they were shown to form a linear ubiquitin chain assembly complex (LUBAC) and to ubiquitylate NEMO. We show that LUBAC binds to ubiquitin chains of different linkage types and that its recruitment to the TNF-RSC is impaired in TRADD-, TRAF2-, and cIAP1/2- but not in RIP1- or NEMO-deficient MEFs. Furthermore, the E3 ligase activity of cIAPs, but not TRAF2, is required for HOIL-1 recruitment to the TNF-RSC. LUBAC enhances NEMO interaction with the TNF-RSC, stabilizes this protein complex, and is required for efficient TNF-induced activation of NF-kappaB and JNK, resulting in apoptosis inhibition. Finally, we demonstrate that sustained stability of the TNF-RSC requires LUBACs enzymatic activity, thereby adding a third form of ubiquitin linkage to the triggering of TNF signaling by the TNF-RSC.


Proteomics | 2009

The proteome of rat olfactory sensory cilia.

Ulrich Mayer; Alexander Küller; Philipp Daiber; Inge Neudorf; Uwe Warnken; Martina Schnölzer; Stephan Frings; Frank Möhrlen

Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca2+ for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC‐ESI‐MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.


Journal of Biological Chemistry | 2012

Proteome of Hydra Nematocyst

Prakash G. Balasubramanian; Anna Beckmann; Uwe Warnken; Martina Schnölzer; Andreas Schüler; Erich Bornberg-Bauer; Thomas W. Holstein; Suat Özbek

Background: Nematocysts are the most sophisticated organelles in the animal kingdom and a hallmark of the phylum Cnidaria. Results: We present the first complete protein map of the Hydra nematocyst. Conclusion: The nematocyst proteome is highly complex and includes novel structural proteins. Significance: The proteome data reveal a eukaryotic origin of the nematocyst and point to common molecular features with the extracellular matrix. Stinging cells or nematocytes of jellyfish and other cnidarians represent one of the most poisonous and sophisticated cellular inventions in animal evolution. This ancient cell type is unique in containing a giant secretory vesicle derived from the Golgi apparatus. The organelle structure within the vesicle comprises an elastically stretched capsule (nematocyst) to which a long tubule is attached. During exocytosis, the barbed part of the tubule is accelerated with >5 million g in <700 ns, enabling a harpoon-like discharge (Nüchter, T., Benoit, M., Engel, U., Ozbek, S., and Holstein, T. W. (2006) Curr. Biol. 16, R316–R318). Hitherto, the molecular components responsible for the organelles biomechanical properties were largely unknown. Here, we describe the proteome of nematocysts from the freshwater polyp Hydra magnipapillata. Our analysis revealed an unexpectedly complex secretome of 410 proteins with venomous and lytic but also adhesive or fibrous properties. In particular, the insoluble fraction of the nematocyst represents a functional extracellular matrix structure of collagenous and elastic nature. This finding suggests an evolutionary scenario in which exocytic vesicles harboring a venomous secretome assembled a sophisticated predatory structure from extracellular matrix motif proteins.


Life Sciences | 2011

Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells

Kamila A. Adamczyk; Susanne Klein-Scory; Mahnaz Moradian Tehrani; Uwe Warnken; Wolff Schmiegel; Martina Schnölzer; Irmgard Schwarte-Waldhoff

AIMS Members of the epidermal growth factor receptor (EGFR) family represent validated targets for anti-cancer therapy and EGFR inhibitors have also shown efficacy in pancreatic carcinoma. We here described in detail molecular forms of the EGF receptor released by pancreatic cancer cells. We found peptides specific for the EGFR in the secretomes of five pancreatic cancer cell lines. Secretomes from cultured cancer cells are widely used as sources for serum biomarker discovery. MAIN METHODS The detailed analysis of EGFR forms in secretomes of human pancreatic cancer cells is a compilation of results from mass spectrometry (MS) and Western blotting with intracellular and extracellular domain specific antibodies. KEY FINDINGS Pancreatic cancer cells secrete a 110 kDa soluble form of the EGFR (sEGFR) representing the ligand binding extracellular EGFR domains and presumably released by ectodomain shedding. At the same time, as constituents of exosomes, the EGFR is released as full-length intact receptor (170 kDa) and as a 65 kDa processed form, the C-terminal remnant fragment that corresponds to the intracellular kinase domain. SIGNIFICANCE The detailed characterization of diverse EGFR forms released by pancreatic cancer cells in vitro and presumably in vivo bears important implications for functional studies, for the validation of soluble EGFR as a serum biomarker and for the design of targeted therapies.


Clinical Cancer Research | 2012

Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness

Dieter Lemke; Philipp-Niclas Pfenning; Felix Sahm; Ann-Catherine Klein; Tore Kempf; Uwe Warnken; Martina Schnölzer; Ruxandra Tudoran; Michael Weller; Michael Platten; Wolfgang Wick

Purpose: Recent work points out a role of B7H3, a member of the B7-family of costimulatory proteins, in conveying immunosuppression and enforced invasiveness in a variety of tumor entities. Glioblastoma is armed with effective immunosuppressive properties resulting in an impaired recognition and ineffective attack of tumor cells by the immune system. In addition, extensive and diffuse invasion of tumor cells into the surrounding brain tissue limits the efficacy of local therapies. Here, 4IgB7H3 is assessed as diagnostic and therapeutic target for glioblastoma. Experimental Design: To characterize B7H3 in glioblastoma, we conduct analyses not only in glioma cell lines and glioma-initiating cells but also in human glioma tissue specimens. Results: B7H3 expression by tumor and endothelial cells correlates with the grade of malignancy in gliomas and with poor survival. Both soluble 4IgB7H3 in the supernatant of glioma cells and cell-bound 4IgB7H3 are functional and suppress natural killer cell–mediated tumor cell lysis. Gene silencing showed that membrane and soluble 4IgB7H3 convey a proinvasive phenotype in glioma cells and glioma-initiating cells in vitro. These proinvasive and immunosuppressive properties were confirmed in vivo by xenografted 4IgB7H3 gene silenced glioma-initiating cells, which invaded significantly less into the surrounding brain tissue in an orthotopic model and by subcutaneously injected LN-229 cells, which were more susceptible to natural killer cell–mediated cytotoxicity than unsilenced control cells. Conclusions: Because of its immunosuppressive and proinvasive function, 4IgB7H3 may serve as a therapeutic target in the treatment of glioblastoma. Clin Cancer Res; 18(1); 105–17. ©2011 AACR.


PLOS ONE | 2010

Proteomic Analysis of Tardigrades: Towards a Better Understanding of Molecular Mechanisms by Anhydrobiotic Organisms

Elham Schokraie; Agnes Hotz-Wagenblatt; Uwe Warnken; Brahim Mali; Marcus Frohme; Frank Förster; Thomas Dandekar; Steffen Hengherr; Ralph O. Schill; Martina Schnölzer

Background Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Principal Findings Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. Conclusions The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades.


Proteome Science | 2013

In-depth mass spectrometric mapping of the human vitreous proteome

Sebastian Aretz; Tim U. Krohne; Kerstin Kammerer; Uwe Warnken; Agnes Hotz-Wagenblatt; Marion Bergmann; Boris V. Stanzel; Tore Kempf; Frank G. Holz; Martina Schnölzer; Jürgen Kopitz

Mapping of proteins involved in normal eye functions is a prerequisite to identify pathological changes during eye disease processes. We therefore analysed the proteome of human vitreous by applying in-depth proteomic screening technologies. For ethical reasons human vitreous samples were obtained by vitrectomy from “surrogate normal patients” with epiretinal gliosis that is considered to constitute only negligible pathological vitreoretinal changes. We applied different protein prefractionation strategies including liquid phase isoelectric focussing, 1D SDS gel electrophoresis and a combination of both and compared the number of identified proteins obtained by the respective method. Liquid phase isoelectric focussing followed by SDS gel electrophoresis increased the number of identified proteins by a factor of five compared to the analysis of crude unseparated human vitreous. Depending on the prefractionation method proteins were subjected to trypsin digestion either in-gel or in solution and the resulting peptides were analysed on a UPLC system coupled online to an LTQ Orbitrap XL mass spectrometer. The obtained mass spectra were searched against the SwissProt database using the Mascot search engine. Bioinformatics tools were used to annotate known biological functions to the detected proteins. Following this strategy we examined the vitreous proteomes of three individuals and identified 1111 unique proteins. Besides structural, transport and binding proteins, we detected 261 proteins with known enzymatic activity, 51 proteases, 35 protease inhibitors, 35 members of complement and coagulation cascades, 15 peptide hormones, 5 growth factors, 11 cytokines, 47 receptors, 30 proteins of visual perception, 91 proteins involved in apoptosis regulation and 265 proteins with signalling activity. This highly complex mixture strikingly differs from the human plasma proteome. Thus human vitreous fluid seems to be a unique body fluid. 262 unique proteins were detected which are present in all three patient samples indicating that these might represent the constitutive protein pattern of human vitreous. The presented catalogue of human vitreous proteins will enhance our understanding of physiological processes in the eye and provides the groundwork for future studies on pathological vitreous proteome changes.


Biogerontology | 2010

Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria

Diksha Dani; Isao Shimokawa; Toshimitsu Komatsu; Yoshikazu Higami; Uwe Warnken; Elham Schokraie; Martina Schnölzer; Frank Krause; Michiru D. Sugawa; Norbert A. Dencher

Mitochondria being the major source and target of reactive oxygen species (ROS) play a crucial role during ageing. We analyzed ageing and calorie restriction (CR)-induced changes in abundance of rat liver mitochondrial proteins to understand key aspects behind the age-retarding mechanism of CR. The combination of blue-native (BN) gel system with fluorescence Difference Gel Electrophoresis (DIGE) facilitated an efficient analysis of soluble and membrane proteins, existing as monomers or multi-protein assemblies. Changes in abundance of specific key subunits of respiratory chain complexes I, IV and V, critical for activity and/or assembly of the complexes were identified. CR lowered complex I assembly and complex IV activity, which is discussed as a molecular mechanism to minimize ROS production at mitochondria. Notably, the antioxidant system was found to be least affected. The GSH:GSSG couple could be depicted as a rapid mean to handle the fluctuations in ROS levels led by reversible metabolic shifts. We evaluated the relative significance of ROS generation against quenching. We also observed parallel and unidirectional changes as effect of ageing and CR, in subunits of ATP synthase, cytochrome P450 and glutathione S-transferase. This is the first report on such ‘putatively hormetic’ ageing-analogous effects of CR, besides the age-retarding ones.


Physical Chemistry Chemical Physics | 2004

Cleavage of the amide bond of protonated dipeptides

Béla Paizs; Martina Schnölzer; Uwe Warnken; Sándor Suhai; Alex G. Harrison

Dissociation of the amide bond of protonated dipeptides is investigated using quantum chemical and RRKM calculations, via exploring linear free energy relationships and performing MS/MS experiments. Our studies suggest that fragmentation of protonated dipeptides at the amide bond is dominated by the a1–y1 pathway. Based on the proton affinities of the N- and C-terminal fragments the a1/y1 ion abundance ratio can be approximated considering a linear free energy relationship. To assist such discussions the PAs of a large number of imines are determined using reliable quantum chemical calculations. The energetics and kinetics of the a1–y1 pathways of H–Ser–Ala–OH, H–Val–Ala–OH, H–Val–Phe–OH, and H–Thr–Phe–OH are explored to rationalize differences between the MS/MS spectra of these peptides. The effect of increasing collision energy on the a1/y1 ion abundance ratio is investigated for protonated H–Tyr–Ile–OH. It is shown that kinetic shifts are mainly responsible for lack of observable [MH–CO]+ peak in the MS/MS spectra of the majority of protonated peptides.

Collaboration


Dive into the Uwe Warnken's collaboration.

Top Co-Authors

Avatar

Martina Schnölzer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Tore Kempf

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Elham Schokraie

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Agnes Hotz-Wagenblatt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ina Oehme

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Olaf Witt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan M. Pfister

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Till Milde

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer Lee

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge