V. Acocella
Roma Tre University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Acocella.
Reviews of Geophysics | 2015
V. Acocella; R. Di Lorenzo; C. Newhall; Roberto Scandone
Calderas are among the most active and dangerous volcanoes. Caldera unrest is defined by enhanced seismicity, gravity changes, surface deformation, and degassing. Although much caldera unrest does not lead to an eruption, every eruption is preceded by an unrest episode. Therefore, the proper description of unrest and the forecast of its possible outcome is a timely and challenging task. Here we review the best known unrest at calderas from 1988 to 2014, building on previous work and proposing an updated database. Where established, the root cause for unrest is always magmatic; none was purely hydrothermal or tectonic. An interpretive classification of unrest invokes two spectra—compositional (mafic to felsic) and the state of magma conduits feeding from the magma reservoir(s) to the surface (from fully plugged, through semiplugged, to open). Magma and gas in open conduits can rise and erupt freely; magma in semiplugged conduits erupts less frequently yet still allows some gas to escape; plugged conduits allow neither magma nor gas to escape. Unrest in mafic calderas is subtler, less pronounced, and repeated, especially with open systems, ensuring the continuous, aseismic, and moderate release of magma. Plugged felsic calderas erupt infrequently, anticipated by isolated, short and seismically active unrest. Semiplugged felsic calderas also erupt infrequently and are restless over decades or centuries, with uplift, seismicity, and degassing and, on the longer-term, resurgence, suggesting repeated stalled intrusions. Finally, the expected advances in better understanding caldera unrest are discussed.
Journal of Geophysical Research | 2012
J. Ruch; V. Acocella; Nobuo Geshi; A. Nobile; F. Corbi
[1]xa0Volcanoes are often associated with vertical collapse, due to deeper magma withdrawal. Calderas are the most notable type of vertical collapse, on the summit of volcanoes. Caldera collapse has been observed and monitored only at Miyakejima (Japan; 2000), Dolomieu (Reunion; 2007) and Fernandina (Galapagos; 1968), highlighting our limited knowledge on its kinematic behavior. Here we use experimental models to investigate the kinematic evolution of calderas and vertical collapses in general. We extract velocity and strain fields using the Particle Image Velocimetry (PIV) technique, generating time series. Experimental vertical collapses undergoing constant subsidence velocity show three main kinematic behaviors: (1) continuous collapse, whose velocity is similar to the source subsidence velocity; (2) incremental collapse, with episodic (stepwise) accelerations along pre-existing ring structures; (3) sudden collapse, resulting from the upward migration of a cavity, only for T/Dxa0>xa02 (T and D are the depth and width of the magma chamber, respectively) and without ring structures. The velocity in the collapsing column may increase up to four orders of magnitude with regard to the constant subsidence velocity of the source. Comparison to nature suggests that: (1) there are close kinematic similarities with monitored collapse calderas, explaining their incremental subsidence after the development of ring structures; (2) sudden pit crater formation is induced by the upward propagation of cavities, due to magma removal at depth and in absence of ring structures; (3) all these types of vertical collapses have a consistent mechanism of formation and kinematic behavior, function of T/D and the presence/absence of ring structures.
Journal of Geophysical Research | 2015
D. Trippanera; J. Ruch; V. Acocella; Eleonora Rivalta
The shallow transport of magma occurs through dikes causing surface deformation. Our understanding of the effects of diking at the surface is limited, especially on the long term, for repeated intrusive episodes. We use analogue models to study the upper crustal deformation induced by dikes. We insert metal plates within cohesive sand with three setups: in setup A, the intrusion rises upward with constant thickness and in setups B and C, the intrusion thickens at a fixed depth, with final rectangular (setup B) or triangular (setup C) shape in section. Setup A creates a doming delimited by reverse faults, with secondary apical graben, without close correspondence in nature. In setups B and C, a depression flanked by two uplifted areas is bordered by inward dipping normal faults propagating downward and, for deeper intrusions in setup B, also by inner faults, reverse at the surface; this deformation is similar to what is observed in nature, suggesting a consistent physical behavior. Dikes in nature initially propagate developing a mode I fracture at the tip, subsequently thickened by magma intrusion, without any host rock translation in the propagation direction (as in setup A). The deformation pattern in setups B and C depends on the intrusion depth and thickness, consistently to what is observed along divergent plate boundaries. The early deformation in setups B and C is similar to that from a single rifting episode (i.e., Lakagigar, Iceland, and Dabbahu, Afar), whereas the late stages resemble the structure of mature rifts (i.e., Krafla, Iceland), confirming diking as a major process in shaping divergent plate boundaries.
Frontiers of Earth Science in China | 2014
V. Acocella
INTRODUCTION Scientists are asked to describe and understand the complex behavior of natural processes. This is often done in difficult conditions, with instruments detecting specific indicators and providing limited datasets to satisfy knowledge and imagination. Despite these limitations, many studies have been able to provide unprecedented understanding of different processes in nature, albeit often under specific (i.e., simplified) conditions. A progressively more quantitative approach has been often obtained exploiting the latest technological improvements available. The study of volcanic, or more generally, magmatic processes well exemplifies these conditions and progression (Figure 1). Qualitative reports of how volcanoes erupt date back to thousands of years, as the description of the 79 AD Vesuvio eruption from Pliny the Younger; however, most of our qualitative and quantitative understanding of the volcano factory and its various indicators has been definitely achieved in the frame of the technological boost of the last decades. Certainly, the tremendous improvement of the monitoring system of active and erupting volcanoes has allowed detecting many changes in the geophysical, geodetic and geochemical behavior before, during and after eruptions (e.g., Lowenstern et al., 2006; Sigmundsson et al., 2010; Chiodini et al., 2012). As a result, a significant amount of data has been collected on a reasonable amount of active volcanoes worldwide, and it is in general possible to assign some physical or chemical meaning to many detected changes. This knowledge is also crucial to define when a volcano enters a phase of deviation from its baseline, or unrest, which may culminate in an eruption and to forecast any impending eruption. The understanding of the processes occurring within volcanoes, ultimately leading to the geophysical, geodetic and geochemical changes detected at the surface, is supported by analytical, numerical, and experimental models (e.g., Cayol et al., 2000; Gudmundsson, 2006; Caricchi et al., 2007; Ruch et al., 2012). Modeling has reached a relatively sophisticated stage, allowing understanding otherwise inaccessible and/or long-lasting 2D and, to a lesser extent, 3D processes. Similarly crucial to understand the mean to longerterm behavior of volcanoes are many field and petrological-geochemical studies, supported by dating techniques (e.g., Gravley et al., 2007; Thordarson and Larsen, 2007; Collins et al., 2009; Wilson and Charlier, 2009; Corsaro et al., 2013). In particular, field studies prove fundamental in reconstructing the eruptive history of a volcano, including the eruption location, type, size and frequency; petrological and geochemical studies provide an invaluable amount of information on the processes and times characterizing the formation of the magma, its rise and emplacement within the crust, including mixing, mingling, crustal assimilation, and fractionation. These approaches have allowed reaching a dramatic advancement in our understanding of volcanoes. An overview of the major improvements in volcanology in the last decades is beyond the scope of this contribution. For facts, one can refer to the comprehensive, detailed and essential overview of Cashman and Sparks (2013). This includes many of the important studies on the emplacement (formation of magma chambers), rise (eruption triggers, dike propagation), and eruption of magma (conduit construction and evolution, magma rheology and fragmentation, eruptive styles). The described amount of research underlines the impressive efforts made by the volcanological community in considering and analyzing the several complex evolutionary stages of a magma within the volcano factory, from its generation to its eruption. Even though the reached level of knowledge may not unravel the many questions behind the volcano factory, it certainly provides a robust platform to test hypotheses and plan more advanced and sophisticated studies. Indeed, despite the important achievements, modern volcanology still has to fully define and understand several major processes, involving different topics and approaches, and resulting in likewise challenges for the future. Here the first-order processes, or challenges for volcanology, are summarized in an ideal journey from the deepest to the shallowest portions of the volcano factory (Figure 2). Many of these processes may be unraveled not only by observations on volcanoes on Earth, but also on extraterrestrial volcanoes, including those on Venus, Mars and Io. While studies on terrestrial volcanism provide the key to understand also extraterrestrial volcanism, it is likewise expectable that observations on adequately imaged volcanic edifices from Mars and Venus allow to better define volcanic processes on Earth.
Tectonics | 2015
D. Trippanera; V. Acocella; J. Ruch; Bekele Abebe
Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102–105u2009years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1u2009km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these grabens to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.
Bulletin of Volcanology | 2012
Nobuo Geshi; V. Acocella; Joel Ruch
Collapse calderas evolve by increasing their depth/diameter ratio. To properly characterize caldera evolution, a structural S/D (ratio between structural subsidence and ring–fault diameter; Ss/Ds), and a topographic S/D (ratio between topographic caldera depth and topographic caldera width; St/Dt), are considered. We review the evolution of the A.D. 2000 Miyakejima caldera, with two concentric ring faults at earlier collapsing stages, and erosion of its wall, accumulating debris on the floor, at later collapsing stages. While St/Dt and Ss/Ds show a similar increase at initial stages, when Ss/Ds ∼0.33 the Ss/Ds becomes significantly different from St/Dt: while continuous caldera subsidence monotonically increases Ss/Ds, the erosion of the wall and the filling of the floor decrease St/Dt. This evolution finds close similarities with recent caldera collapses of Krakatau (1883), Katmai (1912), Fernandina (1968), Tolbachik (1975–1976), Pinatubo (1991), and Dolomieu (2007). Analog experiments mimic the observed variation, evolving from a depression controlled by the activity of the double-ring faults to that controlled by the erosion of the wall and sedimentation at the floor. These natural and modeling results show that the control on the shape of mature calderas (Ss/Dsu2009>u20090.07) and approaching Ss/Dsu2009=u20090.3–0.4 passes from a mainly structural to a mainly erosional control. Both St/Dt and Ss/Ds are needed to describe the evolution of a collapse and the processes accompanying it. Evaluating St/Dt and Ss/Ds allows proper description of the precise evolutionary stage of a caldera and of the relative importance of the structural and erosional processes and allows making semiquantitative comparisons between evolutionary stages.
Tectonics | 2016
J. Ruch; Luigina Vezzoli; R. De Rosa; R. Di Lorenzo; V. Acocella
The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55u2009ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10u2009km longu2009×u20092u2009km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102–104u2009years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.
Bulletin of Volcanology | 2018
D. Trippanera; J. Ruch; V. Acocella; T. Thordarson; Stefano Urbani
Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.
Earth and Planetary Science Letters | 2015
F. Corbi; Eleonora Rivalta; Virginie Pinel; Francesco Maccaferri; Marco Bagnardi; V. Acocella
Archive | 2010
Giuseppe Solaro; V. Acocella; Susi Pepe; Joel Ruch; Marco Neri; Eugenio Sansosti
Collaboration
Dive into the V. Acocella's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs