V. Bagnoud
GSI Helmholtz Centre for Heavy Ion Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. Bagnoud.
Physics of Plasmas | 2010
K. Harres; I. Alber; An. Tauschwitz; V. Bagnoud; Hiroyuki Daido; M. Günther; F. Nürnberg; A. Otten; M. Schollmeier; J. Schütrumpf; M. Tampo; Markus Roth
This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid’s axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first ...
Optics Express | 2007
V. Bagnoud; Jonathan D. Zuegel; N. Forget; C. Le Blanc
We report on the first experimental measurement of high-dynamic-range pulse contrast of compressed optical parametric chirped-pulse-amplification (OPCPA) pulses on the picosecond scale. The measured -80-dB OPCPA contrast at 1054 nm agrees well with theoretical predictions and exceeds the estimated and measured levels for comparable amplification in a Ti:sapphire regenerative amplifier by approximately 10 dB. A key to achieving better contrast with OPCPA is the simpler experimental setup that promotes more-efficient coupling of seed pulse energy into the amplification system.
Laser and Particle Beams | 2007
Th. Kuehl; D. Ursescu; V. Bagnoud; Dasa Javorkova; O. Rosmej; K. Cassou; S. Kazamias; A. Klisnick; D. Ros; P. V. Nickles; B. Zielbauer; James Dunn; P. Neumayer; G.J. Pert
Intense and stable laser operation with Ni-like Zr and Ag was demonstrated at pump energies between 2 J and 5 J energy from the PHELIX pre-amplifier section. A novel single mirror focusing scheme for the TCE x-ray laser ~XRL! has been successfully implemented by the LIXAM0MBI0GSI collaboration under different pump geometries. This shows potential for an extension to shorter XRL wavelength. Generation of high quality XRL beams for XRL spectroscopy of highly charged ions is an important issue within the scientific program of PHELIX. Long range perspective is the study of nuclear properties of radioactive isotopes within the FAIR project.
Optics Letters | 2010
Daniel Zimmer; B. Zielbauer; M. Pittman; O. Guilbaud; J. Habib; S. Kazamias; David Ros; V. Bagnoud; Thomas Kuehl
This Letter reports on the optimization of a tabletop nickel-like molybdenum transient collisionally excited soft x-ray laser (SXRL) at 18.9 nm performed by a double-pulse single-beam grazing incidence pumping (DGRIP). This scheme allows for the first time, to our knowledge, the full control of the pump laser parameters including the pre-pulse duration optimally generating the SXRL amplifier under a grazing incidence. The single-beam geometry of the collinear double-pulse propagation guarantees the ideal overlap of the pre-pulse and main pulse from shot to shot resulting in a more efficient and highly stable SXRL output. SXRL energies up to 2.2 microJ are obtained with a total pump energy less than 1 J for several hours at a 10 Hz repetition rate without realignment under once optimized double pumping pulse parameters including energy ratio, time delay, pre-pulse and main pulse durations, and line focus width.
Applied Physics Letters | 2011
Robert Gray; Xiaohui Yuan; D. C. Carroll; C. M. Brenner; M. Coury; M. N. Quinn; O. Tresca; B. Zielbauer; B. Aurand; V. Bagnoud; J. Fils; T. Kühl; Xian Lin; Cuncheng Li; Y. T. Li; Markus Roth; D. Neely; P. McKenna
The angular distribution of energetic electrons emitted from thin foil targets irradiated by intense, picosecond laser pulses is measured as a function of laser incidence angle, intensity, and polarization. Although the escaping fast electron population is found to be predominantly transported along the target surface for incidence angles ≥65°, in agreement with earlier work at lower intensities, rear-surface proton acceleration measurements reveal that a significant electron current is also transported longitudinally within the target, irrespective of incident angle. These findings are of interest to many applications of laser-solid interactions, including advanced schemes for inertial fusion energy.
Physics of Plasmas | 2015
C. Brabetz; S. Busold; T. E. Cowan; O. Deppert; D. Jahn; Oliver Kester; Markus Roth; D. Schumacher; V. Bagnoud
The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum fur Schwerionenforschung GmbH with laser intensities in the range from 1018 W cm−2 to 1020 W cm−2. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.
Plasma Physics and Controlled Fusion | 2011
O. Tresca; D. C. Carroll; Xiaohui Yuan; B. Aurand; V. Bagnoud; C. M. Brenner; M. Coury; J. Fils; Robert Gray; T. Kühl; Cuncheng Li; Y. T. Li; X. X. Lin; M. N. Quinn; R. G. Evans; B. Zielbauer; Markus Roth; D. Neely; P. McKenna
Compared with conventional bulk metallic glasses, Ce-based and Zn-based bulk metallic glasses have received considerable attention because of their possible application as structural and functional materials. Kinetic fragility parameter m in amorphous material presents degree of deviations from the Arrhenius law above the glass transition temperature (T-g) of the material. Kinetic fragility parameter (m) and Kauzmann temperature (T-K) in (Ce0.72Cu0.28)(90-x) Al10Fex (x = 0, 5 or 10) and Zn38Mg12Ca32Yb18 bulk metallic glasses have been determined by differential scanning calorimetry (DSC). Results show that Zn38Mg12Ca32Yb18 presents a higher m than (Ce0.72Cu0.28)(90-x) Al10Fex (x = 0, 5 or 10). The activation energies E-g for glass transition are 1.51 eV (x = 0), 1.59 eV (x = 5) and 1.83 eV (x = 10) in (Ce0.72Cu0.28)(90-x) Al10Fex (x = 0, 5 or 10), and 3.59 eV in Zn38Mg12Ca32Yb18, respectively. The values of E-g increase with increasing the Fe content in (Ce0.72Cu0.28)(90-x) Al10Fex (x = 0, 5 or 10) bulk metallic glasses. Kinetic fragility parameter in of bulk metallic glasses increases with the glass transition temperature T-g of bulk metallic glasses, in agreement with previous investigations
Scientific Reports | 2015
S. Busold; D. Schumacher; C. Brabetz; Diana Jahn; Florian Kroll; O. Deppert; U. Schramm; T. E. Cowan; A. Blažević; V. Bagnoud; Markus Roth
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.
Optics Express | 2014
F. Wagner; S. Bedacht; A. Ortner; Markus Roth; A. Tauschwitz; B. Zielbauer; V. Bagnoud
We used time-resolved shadowgraphy to characterize the pre-plasma formation in solid-target interaction experiments with micrometer-scale accuracy. We performed quantitative measurements of the plasma density for amplified spontaneous emission (ASE) levels ranging from 2 · 10(-7) to 10(-10) backed with 2-dimensional hydrodynamic simulations. We find that ASE levels above 10(-9) are able to create a significant pre-plasma plume that features a plasma canal driving a self-focusing of the laser beam. For ASE levels of 10(-10), no ASE pre-plasma could be detected.
Physics of Plasmas | 2011
M. M. Günther; K. Sonnabend; E. Brambrink; K. Vogt; V. Bagnoud; K. Harres; Markus Roth
We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.