Thomas Kuehl
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Kuehl.
Optics Letters | 2007
K. Cassou; S. Kazamias; D. Ros; F. Ple; G. Jamelot; A. Klisnick; Olle Lundh; Filip Lindau; Anders Persson; Claes-Göran Wahlström; S. de Rossi; D. Joyeux; B. Zielbauer; D. Ursescu; Thomas Kuehl
We report the near-field imaging characterization of a 10 Hz Ni-like 18.9 nm molybdenum soft-x-ray laser pumped in a grazing incidence pumping (GRIP) geometry with a table-top laser driver. We investigate the effect of varying the GRIP angle on the spatial behavior of the soft-x-ray laser source. After multiparameter optimization, we were able to find conditions to generate routinely a high-repetition-rate soft-x-ray laser with an energy level of up to 3 microJ/pulse and to 6x10(17) photons/s/mm2/mrad2/(0.1% bandwidth) average brightness and 1x10(28) photons/s/mm2/mrad2/(0.1% bandwidth) peak brightness.
Optics Letters | 2010
Daniel Zimmer; B. Zielbauer; M. Pittman; O. Guilbaud; J. Habib; S. Kazamias; David Ros; V. Bagnoud; Thomas Kuehl
This Letter reports on the optimization of a tabletop nickel-like molybdenum transient collisionally excited soft x-ray laser (SXRL) at 18.9 nm performed by a double-pulse single-beam grazing incidence pumping (DGRIP). This scheme allows for the first time, to our knowledge, the full control of the pump laser parameters including the pre-pulse duration optimally generating the SXRL amplifier under a grazing incidence. The single-beam geometry of the collinear double-pulse propagation guarantees the ideal overlap of the pre-pulse and main pulse from shot to shot resulting in a more efficient and highly stable SXRL output. SXRL energies up to 2.2 microJ are obtained with a total pump energy less than 1 J for several hours at a 10 Hz repetition rate without realignment under once optimized double pumping pulse parameters including energy ratio, time delay, pre-pulse and main pulse durations, and line focus width.
Optics Express | 2008
D. Zimmer; V. Bagnoud; Boris Ecker; Udo Eisenbarth; J. Habib; Daniel Hochhaus; Dasa Javorkova; S. Kazamias; Thomas Kuehl; David Ros; D. Ursescu; B. Zielbauer
An optimized pumping geometry for transient collisionally excited soft X-ray lasers is presented, similar to the geometry proposed by [1]. In contrast to usual approaches, where a nanosecond pre-pulse is assumed to provide the optimal plasma preparation and a picosecond pulse performs the final heating- and excitation process, two pulses of equal duration in the range around 10 picoseconds are applied. Both pulses are produced in the front end of the CPA pump laser. They are focused onto the target with the same spherical mirror under non-normal incidence geometry, optimized for efficient traveling wave excitation for the main-pulse. A first experiment was performed on Ni-like palladium (14.7 nm) at less than 500mJ total pulse energy on the target. This proves that this configuration is at least as favorable as the standard GRIP scheme, providing much simpler and more reliable operation.
26th European Conference on Laser Interaction with Matter (ECLIM 2000) | 2001
Markus Roth; Bruno Becker-de Mos; R. Bock; Stefan Borneis; Herbert Brandt; C. Bruske; John A. Caird; E. L. Dewald; C. Haefner; D. H. H. Hoffmann; M.P. Kalachnikov; H.-J. Kluge; Ferenc Krausz; Thomas Kuehl; Grant Logan; D. Marx; Paul Neumayer; P. V. Nickles; M. P. Perry; K. Poppensieker; Irene Reinhard; W. Sandner; Roland A. Sauerbrey; A. Tauschwitz; I. Will
The unique combination of an intense heavy ion beam accelerator and a high energy laser opens the possibility of exploring new physics taking advantage of the synergy of both facilities. A variety of new fields can be addressed with this combination in plasma physics, atomic physics, nuclear- and astro-physics as well as material research. In addition, using CPA-technology, laser pulses with a pulse power of up to a petawatt opens the door to explore the regime of fully relativistic plasmas. Therefore the Gesellschaft fuer Schwerionenforschung is augmenting the current high intensity upgrade of the heavy ion accelerator facility with the construction of PHELIX. Designed with two pulse-generating front ends and send to multiple experimental areas PHELIX will serve as a highly versatile laser system for various applications. In this report, we present the design of the laser system and some key experiments that can be performed with this combination for the first time.
International Symposium on Optical Science and Technology | 2001
Paul Neumayer; J. Alvarez; Bruno Becker-de Mos; Stefan Borneis; K. Brueck; E. Gaul; C. Haefner; K. A. Janulewicz; Thomas Kuehl; D. Marx; Irene Reinhard; Marco Tomaselli; P. V. Nickles; W. Sandner; W. Seelig
The Gesellschaft fuer Schwerionenforschung (GSI, Society for Heavy Ion Research) is currently the leading facility in the production of radioactive isotopes. Nuclear properties like charge radii, spin, and magnetic moments of exotic nuclei provide important data for testing of nuclear models. These properties are usually accessed by laser spectroscopy, which requires photon energies of around 100 eV in the case of lithium-like ions. We propose to use a transient gain X-ray laser (XRL) at the experimental storage ring (ESR) to perform this kind of spectroscopy. In this article we describe the planned experiments and give an overview of the current construction at GSI.
Optics Express | 2012
J. Habib; O. Guilbaud; B. Zielbauer; D. Zimmer; M. Pittman; S. Kazamias; C. Montet; Thomas Kuehl; D. Ros
The influence on Nickel-like Molybdenum soft-x-ray laser performance and stability of a low energy laser prepulse arriving prior to the main laser pumping pulses is experimentally investigated. A promising regime for 10 Hz operation has been observed. A four times increase in soft-x-ray laser operation time with a same target surface is demonstrated. This soft-x-ray laser operation mode corresponds to an optimum delay between the prepulse and the main pulses and to a prepulse energy greater than 20 mJ. We also show that this regime is not associated with a weaker degradation of the target or any reduced ablation rate. Therefore the role of preplasma density gradient in this effect is discussed.
Computer Physics Communications | 2005
D. Ursescu; Marco Tomaselli; Thomas Kuehl; S. Fritzsche
To facilitate the use of the extended nuclear shell model (NSM), a F ERMI module for calculating some of its basic quantities in the framework of MAPLE is provided. The Moshinsky brackets, the matrix elements for several central and non-central interactions between nuclear two-particle states as well as their expansion in terms of Talmi integrals are easily given within a symbolic formulation. All of these quantities are available for interactive work. Program summary
Proceedings of SPIE | 2009
Thomas Kuehl; Bastian Aurand; V. Bagnoud; Boris Ecker; Udo Eisenbarth; Jérôme Fils; Daniel Hochhaus; Dasa Javorkova; Paul Neumayer; B. Zielbauer; D. Zimmer; J. Habib; S. Kazamias; A. Klisnick; David Ros; Josef Seres; Christian Spielmann; D. Ursescu
Development of x-ray lasers using the PHELIX laser at the GSI Helmholtz center for heavy-ion research [1] is targeting a number of applications of novel x-ray sources in combination with energetic heavy-ion beams. This includes Thomson scattering diagnostics of heavy-ion driven plasmas, x-ray opacity measurements, and x-ray laser spectroscopy of highly-charged ions. Developments centered on the application of a novel double-pulse GRIP-like pumping scheme, DGRIP, where nonnormal incidence geometry is used for both the pre- and the main pulse for transient pumped Ni-like x-ray lasers [2,3]. This scheme was used at lower energy levels to pump soft x-ray lasers in the 50 – 100 eV regime as well as for pulse energies above 100 J for the pumping of shorter wavelength soft x-ray lasers [4].
Review of Scientific Instruments | 2012
Bastian Aurand; Christian Rödel; H. W. Zhao; S. Kuschel; Martin Wünsche; Oliver Jäckel; Martin Heyer; Frank Wunderlich; Malte C. Kaluza; G. G. Paulus; Thomas Kuehl
We report on a four-mirror reflective wave-plate system based on a phase-shifting mirror (PSM) for a continuous variation of elliptical polarization without changing the beam position and direction. The system presented and characterized here can replace a conventional retardation plate providing all advantages of a PSM, such as high damage-threshold, large scalability, and low dispersion. This makes reflective wave-plates an ideal tool for ultra-high power laser applications.
Review of Scientific Instruments | 2014
Lovisa Senje; M. Yeung; B. Aurand; S. Kuschel; Christian Rödel; F. Wagner; Kun Li; B. Dromey; V. Bagnoud; Paul Neumayer; Markus Roth; Claes-Göran Wahlström; Matthew Zepf; Thomas Kuehl; D. Jung
Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.